Structural Effects on Absorption, Metabolism, and Health Effects of Lipids
Fereidoon Shahidi
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorWon Young Oh
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorAndrew Garnier
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorArmand B. Christophe
Ghent University Hospital, Ghent, Belgium
Deceased.Search for more papers by this authorFereidoon Shahidi
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorWon Young Oh
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorAndrew Garnier
Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorArmand B. Christophe
Ghent University Hospital, Ghent, Belgium
Deceased.Search for more papers by this authorAbstract
The structure of fatty acid-containing lipid classes is defined as the grouping or positioning of fatty acids on the alcohol backbone. Alcohol backbones considered are glycerol, phytosterols/-stanols, and sucrose. Health-related nutritional effects of food lipids depend on the fatty acids they contain (not covered here), on the alcohol backbone, on the number of fatty acids esterified on the alcohol backbone if applicable (triacylglycerols vs. diacylglycerols vs. monoacylglycerols), and on the position the fatty acids occupy. The specificity of the lipases that are present in the intestinal tract are a major determinant of the digestion products that will be formed. Different digestion products will react differently in the intestinal lumen and after absorption will be metabolized differently in the intestinal cells. Specificity of lipases in combination with different handling of different fat digestion products is at the basis of structure-related effects of food lipids. The position of fatty acids in triacylglycerols (inner or outer) can have an effect on digestibility (for saturated fatty acids), route of transport (for medium-chain fatty acids), conversion in higher unsaturated fatty acids (for parent essential fatty acids), chylomicronemia, cholesterolemia, and atherogenicity. The well-known cholesterolemic and atherogenic effects of different fatty acids are more pronounced when these fatty acids are esterified at the inner position of triglycerides. Partial glycerides have nutritional effects different from triglycerides with the same fatty acid composition. The nature of the alcohol backbone of food fats is also extremely important for their health-related nutritional effects. Phytosterol/-stanol esters, for instance, have cholesterol-lowering effects, and sucrose polyesters cannot be absorbed from the intestinal tract.
References
- 1Hirschmann, H. (1960). J. Biol. Chem. 235: 762–2767.
- 2Kritchevsky, D., Tepper, S.A., and Klurfeld, D.M. (1998). Lipids 33: 821–823.
- 3Mukherjee, S., Duta, R., and Bandhyopadhyay, C. (1960). J. Atheroscler. Res. 10: 51–54.
- 4Yoshida, H., Mawatari, M., Ikeda, I. et al. (1999). J. Nutr. Sci. Vitaminol. 45: 411–421.
- 5Phan, C.T. and Tso, P. (2001). Front. Biosci. 6: D299–D319.
- 6Sek, L., Porter, C.J., Kaukonen, A.M., and Chapman, W.N. (2002). J. Pharm. Pharmacol. 54: 29–41.
- 7Jensen, R.G., De Jong, F.A., Lambert-Davis, L.G., and Hamosh, M. (1994). Lipids 29: 433–435.
- 8Levy, E., Goldstein, R., Stankieviez, H. et al. (1984). J. Pediatr. Gastroenterol. Nutr. 5: 784–789.
- 9Hamosh, M., Klaeveman, H.L., Wolf, R.O., and Scow, R.O. (1975). J. Clin. Invest. 55: 908–913.
- 10Armand, M., Hamosh, M., DiPalma, J.S. et al. (1995). Am. J. Clin. Nutr. 62: 74–80.
- 11Carriere, F., Barrowman, J.A., Verger, R., and Laugier, R. (1993). Gastroenterology 105: 876–888.
- 12Liao, T.H., Hamosh, M., and Hamosh, P. (1984). P. Pediatr. Res. 18: 402–4090.
- 13Jian, R., Vigneron, N., Najean, Y. et al. (1982). Dig. Dis. Sci. 27: 705–711.
- 14Maes, B.D., Hiele, M.I., Geypens, B.J. et al. (1998). Eur. J. Clin. Invest. 28: 197–204.
- 15Cortot, A., Philips, S.F., and Malagelada, J.R. (1982). Gastroenterology 82: 877–881.
- 16Hunt, J.N. and Knox, M.T. (1968). J. Physiol. 19: 327–336.
- 17Maes, B.D., Ghoos, Y.F., Geypens, B.J. et al. (1996). Gut 38: 23–27.
- 18Oosterveld, A., Minekus, M., Bomhof, E. et al. (2016). Food Funct. 7: 2979–2995.
- 19Horner, K.M., Finlayson, G., Byrne, N.M., and King, N.A. (2016). Physiol. Behav. 160: 43–49.
- 20Wickham, M., Wilde, P., and Fillerely-Travis, A. (2002). Biochim. Biophys. Acta 1580: 110–122.
- 21Xu, X., Fomuso, L.B., and Akoh, C.C. (2000). J. Agric. Food Chem. 48: 3–10.
- 22Carrière, F., Rogalska, E., Cudrey, C. et al. (1997). Bioorg. Med. Chem. 5: 429–435.
- 23Armand, M. (2007). Curr. Opin. Clin. Nutr. 10: 156–164.
- 24Couëdelo, L., Vaysse, C., Vaique, E. et al. (2012). J. Nutr. 142: 70–75.
- 25Lykidis, A., Mougios, V., and Arzoglou, P. (1995). Eur. J. Biochem. 230: 892–898.
- 26Christophe, A. and Verdonk, G. (1977). Biochem. Soc. Trans. 5: 1041–1042.
- 27Murase, T., Mizuno, T., Omachi, T. et al. (2001). J. Lipid Res. 42: 372–378.
- 28Boswinkel, G., Derksen, J.P.T., van't Riet, K., and Cuperus, F.P. (1996). J. Am. Oil Chem. Soc. 73: 707–711.
- 29Lyubachesskaya, G. and Boyle-Rode, E. (2000). Lipids 35: 1353–1358.
- 30Skipski, V.P., Morehous, M.G., and Duel, H.J. (1959). Arch. Biochem. Biophys. 81: 93–104.
- 31Christophe, A., Verdonk, G., Mashali, M., and Sandra, P. (1982). Lipids 17: 759–761.
- 32Mu, H. and Hoy, C.E. (2002). Lipids 37: 329–331.
- 33Ohkubo, Y., Mori, S., Ishikawa, Y. et al. (1992). Digestion 51: 42–50.
- 34Lehner, R. and Kuksis, A. (1993). J. Biol. Chem. 268: 24726–24733.
- 35Redden, P.R., Lin, X., Fahey, J., and Horrobin, D.F. (1995). J. Chromatog A 704: 99–111.
- 36Saunders, D.R. and Sillery, J. (1976). J. Lipids 11: 830–832.
- 37Nalbone, G., Lairon, D., Charbonnier-Augeire, M. et al. (1980). Biochim. Biophys. Acta 620: 612–625.
- 38Borgstrom, B. (1984). Gastroenterology 78: 954–962.
- 39Awada, M., Meynier, A., Soulage, C.O. et al. (2013). Nutr. Metab. 10: 23.
- 40Rampone, A.J. and Long, L.R. (1977). Biochim. Biophys. Acta 486: 500–510.
- 41Sugawara, T., Kushiro, M., Zhang, H. et al. (2001). J. Nutr. 131: 2921–2927.
- 42O'Doherty, P.J.A., Yousef, I.M., and Kuksis, A. (1974). Can. J. Biochem. 52: 726–733.
- 43Zierenberg, O., Odenthal, J., and Betzing, H. (1979). Atherosclerosis 34: 259–276.
- 44Shamir, R., Johnson, W.J., Zolfaghari, R. et al. (1995). Biochemistry 16: 6351–6358.
- 45Karthik, P. and Anandharamakrishnan, C. (2018). Colloids Surf. A Physicochem. Eng. Asp. 553: 278–287.
- 46Mansbach, C.M., Cohen, R.S., and Leff, P.B. (1975). J. Clin. Invest. 56: 781–791.
- 47Hibi, M., Sugiura, Y., Yokoyama, R. et al. (2011). Obesity (Silver Spring) 19: 536–540.
- 48Yuan, Q., Ramprasath, V.R., Harding, S.V. et al. (2010). J. Nutr. 140: 1122–1126.
- 49Small, D.M. (1991). Annu. Rev. Nutr. 11: 413–434.
- 50Shahkhalili, Y., Murset, C., Meirim, I. et al. (2001). Am. J. Clin. Nutr. 73: 246–252.
- 51Aoyama, T., Fukui, K., Taniguchi, K. et al. (1996). J. Nutr. 126: 225–231.
- 52Boucroy, B. and Clement, J. (1969). Biochim. Biophys. Acta 187: 59–72.
- 53Nilsson, A. and Becker, B. (1995). Am. J. Physiol. 268: G732–G738.
- 54Huang, Y.S., Lin, J.W., Koba, K., and Anderson, S.N. (1995). Mol. Cell. Biochem. 18: 121–130.
- 55Chen, Q. and Nillson, A. (1994). J. Lipid Res. 35: 601–609.
- 56Murase, T., Kondo, H., Hase, T. et al. (2001). Biochim. Biophys. Acta 1530: 15–22.
- 57Sanderson, I.R. and Naik, S. (2000). Annu. Rev. Nutr. 20: 311–338.
- 58De Jong, B.J. and Hulsmann, B.C. (1978). Biochim. Biophys. Acta 27: 36–46.
- 59Hanel, A.M. and Gelb, M.H. (1995). Biochemistry 20: 7807–7818.
- 60Lehner, R., Kuksis, A., and Itabashi, Y. (1993). Lipids 28: 29–34.
- 61Paris, R. and Clement, G. (1969). Proc. Soc. Exp. Biol. Med. 131: 363–365.
- 62Duff, S.M., Kalambur, S., and Boyle-Roden, E. (2001). J. Nutr. 131: 774–778.
- 63Christophe, A. and Verdonk, G. (1980). Arch. Int. Physiol. Biochim. 88: B221–B222.
- 64Christophe, A. and Verdonk, G. (1972). Arch. Int. Physiol. Biochim. 80: 954–955.
- 65Banno, F., Doisaki, S., Shimizu, N., and Fujimoto, K. (2002). J. Nutr. Sci. Vitaminol. 48: 30–35.
- 66Taguchi, H., Watanabe, H., Onizawa, K. et al. (2000). J. Am. Coll. Nutr. 19: 789–796.
- 67Couëdelo, L., Amara, S., Lecomte, M. et al. (2015). Food Funct. 6: 1726–1735.
- 68Vors, C., Pineau, G., Gabert, L. et al. (2013). Am. J. Clin. Nutr. 97: 23–36.
- 69Kimura, R., Takahashi, N., Murota, K. et al. (2011). Biochem. Biophys. Res. Commun. 410: 1–6.
- 70Mortimer, B.C., Kenrick, M.A., Holthouse, D.J. et al. (1992). Biochim. Biophys. Acta 1127: 67–73.
- 71Mortimer, B.C., Holthouse, D.J., Martins, I.J. et al. (1994). Biochim. Biophys. Acta 1211: 171–180.
- 72Phan, C.T., Mortimer, B.C., Martins, I.J., and Redgrave, T.G. (1999). Am. J. Clin. Nutr. 9: 1151–1161.
10.1093/ajcn/69.6.1151 Google Scholar
- 73Yu, K.C. and Cooper, A.D. (2001). Front. Biosci. 6: D332–D354.
- 74Irawati, D., Mamo, J.C., Slivkoff-Clark, K.M. et al. (2017). Br. J. Nutr. 117: 403–412.
- 75Pufal, D.A., Quinlan, P.T., and Salter, A.M. (1995). Biochim. Biophys. Acta 1258: 41–48.
- 76Yamamoto, I., Sugano, M., and Wada, M. (1971). Atherosclerosis 13: 171–184.
- 77Elson, C.E., Dugan, L.R., Bratzler, L.J., and Parson, A.M. (1967). Lipids 1: 322–324.
- 78Renaud, S.C., Ruf, J.C., and Pethitory, D. (1995). J. Nutr. 125: 229–237.
- 79Sanders, T.A., Berry, S.E., and Miller, G.J. (2003). Am. J. Clin. Nutr. 74: 777–782.
10.1093/ajcn/77.4.777 Google Scholar
- 80Kritchevski, D. (1998). In: Structural Modified Food Fats: Synthesis, Biochemistry and Use (ed. A.B. Christophe), 183–188. Champaign, IL: AOCS Press.
10.1201/9781439832103.ch14 Google Scholar
- 81Nelsson, C.M. and Innis, S.M. (1999). Am. J. Clin. Nutr. 70: 62–69.
- 82Innis, S.M. (2011). Abv. Nutr. 2: 275–283.
- 83Yli-Jokipii, K., Kallio, H., Schwab, U. et al. (2001). J. Lipid Res. 42: 1618–1625.
- 84Ikeda, I., Yoshida, H., Tomooka, M. et al. (1998). Lipids 33: 897–904.
- 85Yoshida, H., Ikeda, I., and Tomooka, M. (2001). J. Nutr. Sci. Vitaminol. 47: 242–247.
- 86Lawson, L.D. and Hughes, B.G. (1988). Biochim. Biophys. Res. Commun. 156: 960–963.
- 87Kaku, S., Yunoki, S., Ohkura, K. et al. (2001). Biosci. Biotechnol. Biochem. 65: 315–351.
- 88Raclot, T., Leray, C., Bach, A.C., and Groscolas, R. (1995). Biochem. J. 311: 911–916.
- 89Raclot, T. (2003). Prog. Lipid Res. 42: 257–288.
- 90Taguchi, H., Nagao, T., Watanabe, H. et al. (2001). Lipids 36: 379–382.
- 91Maki, K.C., Davidson, M.H., Tsushima, R. et al. (2002). Am. J. Clin. Nutr. 76: 1230–1236.
- 92Itani, S.I., Ruderman, N.B., Schmieder, F., and Boden, G. (2002). Diabetes 51: 2005–2011.
- 93Yamamoto, K., Asakawa, H., Tokunaga, K. et al. (2001). J. Nutr. 131: 3204–3207.
- 94Meguro, S., Higashi, K., Hase, T. et al. (2001). Eur. J. Clin. Nutr. 55: 513–517.
- 95Wanatabe, H., Onizawa, K., Naito, S. et al. (2001). Ann. Nutr. Metab. 45: 259–264.
- 96Cruz-Hernandez, C., Thakkar, S.K., Moulin, J. et al. (2012). Nutrients 4: 1781–1793.
- 97Giacomozzi, A.S., Carrín, M.E., and Palla, C.A. (2018). J. Food Sci. 83: 1505–1515.
- 98Zeisel, S.H. and Blusztajn, J.K. (1994). Annu. Rev. Nutr. 14: 269–296.
- 99Amate, L., Gil, A., and Ramirez, M. (2001). J. Nutr. 131: 3216–3221.
- 100Amate, L. and Ramirez, M. (2001). J. Nutr. 131: 1250–1255.
- 101Wijendran, V., Huang, M.C., Diau, G.Y. et al. (2002). Pediatr. Res. 51: 265–272.
- 102Gimenez, M.S., Oliveros, L.B., and Gomez, N.N. (2011). Int. J. Mol. Sci. 12: 2408–2433.
- 103Küllenberg, D., Taylor, L.A., Schneider, M., and Massing, U. (2012). Lipids Health Dis. 11: 3.
- 104Jandacek, R.J. (2012). Physiol. Behav. 105: 1124–1131.
- 105Hallikainen, M.A., Sarkinen, E.S., and Uusitupa, M.I. (2000). J. Nutr. 30: 767–776.
10.1093/jn/130.4.767 Google Scholar
- 106Silbernagel, G., Baumgartner, I., and März, W. (2015). J. AOAC Int. 98: 739–741.
- 107Nissinen, M., Gylling, H., Vuoristo, M., and Miettinen, T.A. (2002). Am. J. Physiol. 282: G1009–G1015.
- 108Jones, P.J., Raeini-Sarjaz, M., Ntanios, F.Y. et al. (2000). J. Lipid Res. 41: 677–705.
- 109Miettinen, T.A., Vuoristo, M., Nissinen, M. et al. (2000). Am. J. Clin. Nutr. 71: 1095–1102.
- 110Ntanios, F.Y. and Duchateau, G.S. (2002). Int. J. Vitam. Nutr. Res. 72: 32–39.
- 111Raeini-Sarjaz, M., Ntanios, F.Y., Vanstone, C.A., and Jones, P.J. (2002). Metabolism 51: 652–656.
- 112Hallikainen, M.A., Sarkkinen, E.S., Gylling, H. et al. (2000). Eur. J. Clin. Nutr. 54: 715–725.
- 113Awad, A.B. and Fink, C.S. (2000). J. Nutr. 130: 2127–2130.
- 114Ramprasath, V.R. (2015). J. AOAC Int. 98: 735–738.
- 115Huang, J., Xu, M., Fang, Y. et al. (2017). Br. J. Nutr. 117: 839–850.