Stability of oxygen anions and hydrogen abstraction from methane on reduced SnO2 (110) surface
Corresponding Author
Yoichi Yamaguchi
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Kansai Research Institute, Computational Sciences Laboratory, Information Communication Research Center, Kyoto Research Park 17, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, JapanSearch for more papers by this authorYosuke Nagasawa
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorAkinori Murakami
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorKenji Tabata
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorCorresponding Author
Yoichi Yamaguchi
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Kansai Research Institute, Computational Sciences Laboratory, Information Communication Research Center, Kyoto Research Park 17, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, JapanSearch for more papers by this authorYosuke Nagasawa
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorAkinori Murakami
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorKenji Tabata
Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
Search for more papers by this authorAbstract
The stability of oxygen anions and the hydrogen abstraction from methane on a reduced SnO2 (110) crystal surface have been studied theoretically using a point-charge model. The geometric and electronic structures for the present molecules are calculated by means of a hybrid Hartree–Fock/density functional method at the B3LYP/6-311+G(3df, 3pd) level of theory. The calculations of the energies on the point-charge model are performed using these optimized geometries. It is found that a low concentration of the active oxygen species O− and O2− is expected on the reduced SnO2 surface. The activation energies for the abstraction of hydrogen atom from methane on the reduced SnO2 surface are obtained: 12 kcal/mol for O− species and more than 48 kcal/mol for O2− species, indicating that O− species on the surface is the main active center for the dissociation of a C(SINGLE BOND)H bond of methane, which is in agreement with the other oxide catalysts. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 669–678, 1998
References
- 1 See, for instance, O. V. Krylov, Catal. Today, 18, 209 (1993).
- 2 C. A. Jones, J. J. Leonard, and J. A. Sofranko, Energy Fuels, 1, 12 (1987).
- 3 F. Firor, The Chahnging Atmosphere (Yale University Press, New Haven, CT, 1990), p. 52.
- 4 See, for instance, R. H. Crabtree, Chem. Rev., 95, 987 (1995).
- 5 A. J. Tench and T. Lawson, Chem. Phys. Lett., 7, 459 (1970).
- 6 C. Naccache, Chem. Phys. Lett., 11, 323 (1971).
- 7 M. Iwamoto and J. H. Lunsford, J. Phys. Chem., 84, 3079 (1980) and references therein.
- 8 V. A. Shvets and V. B. Kazansky, J. Catal., 25, 123 (1972).
- 9 Y. B. Taarit and J. H. Lunsford, Chem. Phys. Lett., 19, 348 (1973).
- 10 C.-H. Lin, T. Ito, J.-X. Wang, and J. H. Lunsford, J. Am. Chem. Soc., 109, 4808 (1987).
- 11 G. J. Hutchings, J. R. Woodhouse, and M. S. Scurrell, J. Chem. Soc., Faraday Trans. I, 85, 2507 (1989).
- 12 S. L. Kaliaguine, B. N. Shelimov, and V. B. Kazansky, J. Catal., 55, 384 (1978).
- 13 R.-S. Liu, M. Iwamoto, and J. H. Lunsford, J. Chem. Soc., Chem. Commun. 78 (1982).
- 14 H.-F. Liu, R.-S. Liu, K. Y. Liew, R. E. Johnson, and J. H. Lunsford, J. Am. Chem. Soc., 106, 4117 (1984).
- 15 T. Ito and J. H. Lunsford, Nature, 314, 721 (1985).
- 16 D. J. Driscoll, W. Martir, J.-X. Wang, and J. H. Lunsford, J. Am. Chem. Soc., 107, 58 (1985).
- 17 J.-X. Wang and J. H. Lunsford, J. Phys. Chem., 90, 5883 (1986).
- 18 S. P. Mehandru, A. B. Anderson, J. F. Brazdil, and R. K. Grasselli, J. Phys. Chem., 91, 2930 (1987).
- 19 K. J. Børve and L. G. M. Pettersson, J. Phys. Chem., 95, 7401 (1991).
- 20 K. J. Børve, J. Chem. Phys., 95, 4626 (1991).
- 21 V. A. Gercher, D. F. Cox, and J. M. Themlin, Surf. Sci., 306, 279 (1994).
- 22 W. Thoren, D. Kohl, and G. Heiland, Surf. Sci., 162, 402 (1985).
- 23 V. T. Agekyan, Phys. Status Solidi A, 4, 11 (1975).
- 24 D. Frölich, R. Klenklies, and R. Helbig, Phys. Rev. Lett., 41, 1750 (1978).
- 25 See, for instance, M. J. Madou, and S. R. Morrison, Chemical Sensing with Solid State Devices (Academic, Boston, 1989).
- 26 P. A. Cox, R. G. Egdell, C. Harding, W. R. Patterson, and P. J. Tavener, Surf. Sci., 123, 179 (1982).
- 27 D. F. Cos, T. B. Fryberger, and S. Semancik, Phys. Rev. B, 38, 2072 (1988).
- 28 E. de Fresärt, J. Darville, and J. M. Gilles, Appl. Surf. Sci., 11 r12, 637 (1982).
- 29 J. M. Themlin, R. Sporken, J. Darville, R. Caudano, J. M. Gilles, and R. L. Johnson, Phys. Rev. B, 42, 11914 (1990).
- 30 R. G. Egdell, S. Ericksen, and W. R. Flavell, Solid State Commun., 60, 835 (1986).
- 31 D. F. Cox, T. B. Fryberger, J. W. Erickson, and S. Semancik, J. Vac. Sci. Technol. A, 5, 1170 (1987).
- 32 T. Choso, and K. Tabata, J. Mol. Catal. A, to appear.
- 33 P. Meriaudeau, C. Naccache, and A. J. Tench, J. Catal., 21, 208 (1971).
- 34 Y. Mizokawa and S. Nakamura, Ohyo Buturi, 46, 580 (1977). We added the O2yad. species to the original equation. 2.
- 35 G. L. Shen, R. Casanova, and G. Thornton, Vacuum, 43, 1129 (1992).
- 36 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Patterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challa-combe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, (Gaussian, Inc., Pittsburgh, PA), 1995.
- 37 A. D. Becke, Phys. Rev. A, 38, 3098 (1988).
- 38 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).
- 39 See, for instance, V. E. Henrich, and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994), p. 43.
- 40 W. Gopel, Prog. Surf. Sci., 20, 9 (1985).
- 41 See, for instance, The Chemical Society of Japan, Eds., Chemistry of Active Oxygen Species (Gakkai Syuppan Center, 1990), Chap. 1.
- 42 J. M. Goodings, D. K. Bohme, and C.-W. Ng, Combust. Flame, 36, 45 (1979).
- 43 J. H. Lunsford, New Frontiers in Catalysis Prc. 10th Int. Congress. (Akademiai Kiado, Budapest, 1993), p. 103.
- 44 C. D. Maggridge, J. P. S. Badyal, and R. M. Lambert, J. Catal., 132, 92 (1991) and references therein.
- 45 One of authors, K. Tabata, unpublished results.
- 46 A. A. Viggiano, R. A. Morris, T. M. Miller, J. F. Friedman, M. M. Barreto, J. F. Paulson, H. H. Michels, R. H. Hobbs, and J. A. Montgomery, Jr., J. Chem. Phys., 106, 8455 (1997).
- 47 T. P. Hamilton, and H. F. Schaefer, III, J. Chem. Phys., 90, 6391 (1989).