Challenges and Opportunities for Small Molecule Aptamer Development
Maureen McKeague
Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6, carleton.ca
Search for more papers by this authorCorresponding Author
Maria C. DeRosa
Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6, carleton.ca
Search for more papers by this authorMaureen McKeague
Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6, carleton.ca
Search for more papers by this authorCorresponding Author
Maria C. DeRosa
Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6, carleton.ca
Search for more papers by this authorAbstract
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
References
- 1 Deigan K. E. and Ferré-D′Amaré A. R., Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs, Accounts of Chemical Research. (2011) 44, no. 12, 1329–1338, 2-s2.0-80053041142, https://doi.org/10.1021/ar200039b.
- 2 Weigand J. E. and Suess B., Aptamers and riboswitches: perspectives in biotechnology, Applied Microbiology and Biotechnology. (2009) 85, no. 2, 229–236, 2-s2.0-71249121480, https://doi.org/10.1007/s00253-009-2194-2.
- 3 Tuerk C. and Gold L., Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science. (1990) 249, no. 4968, 505–510, 2-s2.0-0025194307.
- 4 Ellington A. D. and Szostak J. W., In vitro selection of RNA molecules that bind specific ligands, Nature. (1990) 346, no. 6287, 818–822, 2-s2.0-0025074907, https://doi.org/10.1038/346818a0.
- 5 Robertson D. L. and Joyce G. F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature. (1990) 344, no. 6265, 467–468, 2-s2.0-0025332385, https://doi.org/10.1038/344467a0.
- 6 Mascini M., Aptamers in Bioanalysis, 2009, John Wiley & Sons, Hoboken, NJ, USA.
- 7 McKeague M., Bradley C. R., De Girolamo A., Visconti A., David Miller J., and DeRosa M. C., Screening and initial binding assessment of fumonisin B1 aptamers, International Journal of Molecular Sciences. (2010) 11, no. 12, 4864–4881, 2-s2.0-78650992626, https://doi.org/10.3390/ijms11124864.
- 8 Jayasena S. D., Aptamers: an emerging class of molecules that rival antibodies in diagnostics, Clinical Chemistry. (1999) 45, no. 9, 1628–1650, 2-s2.0-0032860385.
- 9 Nimjee S. M., Rusconi C. P., and Sullenger B. A., Aptamers: an emerging class of therapeutics, Annual Review of Medicine. (2005) 56, 555–583, 2-s2.0-14544295783, https://doi.org/10.1146/annurev.med.56.062904.144915.
- 10 Jhaveri S. and Ellington A., In vitro selection of RNA aptamers to a small molecule target, Current Protocols in Nucleic Acid Chemistry. (2002) no. Chapter 9, Unit 9.5, 2-s2.0-0042569528.
- 11 Bardoczy V. and Meszaros T., Aptamer selection for macromolecular (Protein) and for small molecule targets, Proceedings of the Periodica Polytechnica Abstracts of PhD Conference, 2006.
- 12 Balogh Z., Lautner G., Bardóczy V., Komorowska B., Gyurcsányi R. E., and Mészáros T., Selection and versatile application of virus-specific aptamers, FASEB Journal. (2010) 24, no. 11, 4187–4195, 2-s2.0-78649852048, https://doi.org/10.1096/fj.09-144246.
- 13 Sefah K., Shangguan D., Xiong X., O′Donoghue M. B., and Tan W., Development of DNA aptamers using Cell-SELEX, Nature protocols. (2010) 5, no. 6, 1169–1185, 2-s2.0-77956682609, https://doi.org/10.1038/nprot.2010.66.
- 14 Beaucage S. L. and Caruthers M. H., Deoxynucleoside phosphoramidites-A new class of key intermediates for deoxypolynucleotide synthesis, Tetrahedron Letters. (1981) 22, no. 20, 1859–1862, 2-s2.0-49149135789.
- 15 Beaucage S. L. and Iyer R. P., Advances in the synthesis of oligonucleotides by the phosphoramidite approach, Tetrahedron. (1992) 48, no. 12, 2223–2311, 2-s2.0-0026606239, https://doi.org/10.1016/S0040-4020(01)88752-4.
- 16 Keefe A. D., Pai S., and Ellington A., Aptamers as therapeutics, Nature Reviews Drug Discovery. (2010) 9, no. 7, 537–550, 2-s2.0-77954220072, https://doi.org/10.1038/nrd3141.
- 17 Beaucage S. L. and Iyer R. P., The synthesis of modified oligonucleotides by the phosporamidite approach and their applications, Tetrahedron. (1993) 49, no. 28, 6123–6194, 2-s2.0-0027164483, https://doi.org/10.1016/S0040-4020(01)87958-8.
- 18 Beaucage S. L. and Iyer R. P., The functionalization of oligonucleotides via phosphoramidite derivatives, Tetrahedron. (1993) 49, no. 10, 1925–1963, 2-s2.0-0027469581, https://doi.org/10.1016/S0040-4020(01)86295-5.
- 19 Bui B. T. S. and Haupt K., Molecularly imprinted polymers: synthetic receptors in bioanalysis, Analytical and Bioanalytical Chemistry. (2010) 398, no. 6, 2481–2492, 2-s2.0-78650181164, https://doi.org/10.1007/s00216-010-4158-x.
- 20 Xu Z. X., Gao H. J., Zhang L. M., Chen X. Q., and Qiao X. G., The biomimetic immunoassay based on molecularly imprinted polymer: a comprehensive review of recent progress and future prospects, Journal of Food Science. (2011) 76, no. 2, R69–R75, 2-s2.0-79952088970, https://doi.org/10.1111/j.1750-3841.2010.02020.x.
- 21 Mills D. R., Peterson R. L., and Spiegelman S., An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proceedings of the National Academy of Sciences of the United States of America. (1967) 58, no. 1, 217–224, 2-s2.0-0014107493.
- 22 Saffhill R., Schneider-Bernloehr H., Orgel L. E., and Spiegelman S., In vitro selection of bacteriophage Qβ ribonucleic acid variants resistant to ethidium bromide, Journal of Molecular Biology. (1970) 51, no. 3, 531–539, 2-s2.0-0014827737.
- 23 Wilson D. S. and Szostak J. W., In vitro selection of functional nucleic acids, Annual Review of Biochemistry. (1999) 68, 611–647, 2-s2.0-0033288028, https://doi.org/10.1146/annurev.biochem.68.1.611.
- 24 Silverman S. and K S., Artificial functional nucleic acids: aptamers, ribozymes, and deoxyribozymes identified by in vitro selection, Functional Nucleic Acids For Analytical Applications. (2009) 1, 47–108, https://doi.org/10.1007/978-0-387-73711-9_3.
- 25 Vant-Hull B., Gold L., and Zichi D. A., Theoretical principles of in vitro selection using combinatorial nucleic acid libraries, Current Protocols in Nucleic acid Chemistry. (2000) no. Chapter 9, Unit 9.1.
- 26 Cruz-Aguado J. A. and Penner G., Determination of ochratoxin A with a DNA aptamer, Journal of Agricultural and Food Chemistry. (2008) 56, no. 22, 10456–10461, 2-s2.0-57849168027, https://doi.org/10.1021/jf801957h.
- 27 Svobodova M., Pinto A., Nadal P., and OSullivan C. K., Comparison of different methods for generation of single-stranded DNA for SELEX processes, Analytical and Bioanalytical Chemistry. (2012) 404, no. 3, 835–842, https://doi.org/10.1007/s00216-012-6183-4.
- 28 Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E. N., Carter J., Dalby A. B., Eaton B. E., Fitzwater T., Flather D., Forbes A., Foreman T., Fowler C., Gawande B., Goss M., Gunn M., Gupta S., Halladay D., Heil J., Heilig J., Hicke B., Husar G., Janjic N., Jarvis T., Jennings S., Katilius E., Keeney T. R., Kim N., Koch T. H., Kraemer S., Kroiss L., Le N., Levine D., Lindsey W., Lollo B., Mayfield W., Mehan M., Mehler R., Nelson S. K., Nelson M., Nieuwlandt D., Nikrad M., Ochsner U., Ostroff R. M., Otis M., Parker T., Pietrasiewicz S., Resnicow D. I., Rohloff J., Sanders G., Sattin S., Schneider D., Singer B., Stanton M., Sterkel A., Stewart A., Stratford S., Vaught J. D., Vrkljan M., Walker J. J., Watrobka M., Waugh S., Weiss A., Wilcox S. K., Wolfson A., Wolk S. K., Zhang C., and Zichi D., Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One. (2010) 5, no. 12, 15004, 2-s2.0-71649093729, https://doi.org/10.1371/journal.pone.0015004.
- 29 Stoltenburg R., Reinemann C., and Strehlitz B., SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomolecular Engineering. (2007) 24, no. 4, 381–403, 2-s2.0-34548551398, https://doi.org/10.1016/j.bioeng.2007.06.001.
- 30 Davis J. H. and Szostak J. W., Isolation of high-affinity GTP aptamers from partially structured RNA libraries, Proceedings of the National Academy of Sciences of the United States of America. (2002) 99, no. 18, 11616–11621, 2-s2.0-0037015034, https://doi.org/10.1073/pnas.182095699.
- 31 Luo X., Mckeague M., Pitre S., Dumontier M., Green J., Golshani A., De Rosa M. C., and Dehne F., Computational approaches toward the design of pools for the in vitro selection of complex aptamers, RNA. (2010) 16, no. 11, 2252–2262, 2-s2.0-78149314215, https://doi.org/10.1261/rna.2102210.
- 32 Ruff K. M., Snyder T. M., and Liu D. R., Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure, Journal of the American Chemical Society. (2010) 132, no. 27, 9453–9464, 2-s2.0-77955791967, https://doi.org/10.1021/ja103023m.
- 33 Win M. N., Klein J. S., and Smolke C. D., Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay, Nucleic Acids Research. (2006) 34, no. 19, 5670–5682, 2-s2.0-33750968498, https://doi.org/10.1093/nar/gkl718.
- 34 Cox J. C., Rudolph P., and Ellington A. D., Automated RNA selection, Biotechnology Progress. (1998) 14, no. 6, 845–850, 2-s2.0-0032210799, https://doi.org/10.1021/bp980097h.
- 35 Goertz P. W., Cox J. C., and Ellington A. D., Automated selection of aminoglycoside aptamers, Journal of the Association for Laboratory Automation. (2004) 9, no. 3, 150–154, 2-s2.0-3042546821, https://doi.org/10.1016/j.jala.2004.04.008.
- 36 Wochner A., Cech B., Menger M., Erdmann V. A., and Glökler J., Semi-automated selection of DNA aptamers using magnetic particle handling, BioTechniques. (2007) 43, no. 3, 344–353, 2-s2.0-34548686312, https://doi.org/10.2144/000112532.
- 37 Cho M. J. and Juliano R., Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations, Trends in Biotechnology. (1996) 14, no. 5, 153–158, 2-s2.0-0029944347, https://doi.org/10.1016/0167-7799(96)10024-X.
- 38 Ashour M. L. and Wink M., Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action, Journal of Pharmacy and Pharmacology. (2011) 63, no. 3, 305–321, 2-s2.0-79952231420, https://doi.org/10.1111/j.2042-7158.2010.01170.x.
- 39 Roemer T., Davies J., Giaever G., and Nislow C., Bugs, drugs and chemical genomics, Nature Chemical Biology. (2012) 8, no. 1, 46–56, 2-s2.0-41749090471, https://doi.org/10.1038/nchembio.744.
- 40 Walsh T. A., The emerging field of chemical genetics: potential applications for pesticide discovery, Pest Management Science. (2007) 63, no. 12, 1165–1171, 2-s2.0-36348963558, https://doi.org/10.1002/ps.1452.
- 41 Cruz-Toledo J., McKeague M., Zhang X., Giamberardino A., McConnell E., Francis T., DeRosa M. C., and Dumontier M., Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments, Database. (2012) 2012, bas006, 2-s2.0-84862257625, https://doi.org/10.1093/database/bas006.
- 42 Mascini M., Palchetti I., and Tombelli S., Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects, Angewandte Chemie. (2012) 51, 1316–1332, https://doi.org/10.1002/anie.201006630.
- 43 Michael F., Oligonucleotide aptamers that recognize small molecules, Current Opinion in Structural Biology. (1999) 9, 324–329, https://doi.org/10.1016/S0959-440X(99)80043-8.
- 44 Jenison R. D., Gill S. C., Pardi A., and Polisky B., High-resolution molecular discrimination by RNA, Science. (1994) 263, no. 5152, 1425–1429, 2-s2.0-0028224199.
- 45 Michaud M., Jourdan E., Villet A., Ravel A., Grosset C., and Peyrin E., A DNA aptamer as a new target-specific chiral selector for HPLC, Journal of the American Chemical Society. (2003) 125, no. 28, 8672–8679, 2-s2.0-0038375414, https://doi.org/10.1021/ja034483t.
- 46 Famulok M. and Szostak J. W., Stereospecific recognition of tryptophan agarose by in vitro selected RNA, Journal of the American Chemical Society. (1992) 114, 3990–3991.
- 47 Famulok M., Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder, Journal of the American Chemical Society. (1994) 116, no. 5, 1698–1706, 2-s2.0-0028011717.
- 48 Geiger A., Burgstaller P., Von der Eltz H., Roeder A., and Famulok M., RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity, Nucleic Acids Research. (1996) 24, no. 6, 1029–1036, 2-s2.0-0029924638, https://doi.org/10.1093/nar/24.6.1029.
- 49 Shoji A., Kuwahara M., Ozaki H., and Sawai H., Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity, Journal of the American Chemical Society. (2007) 129, no. 5, 1456–1464, 2-s2.0-33846799193, https://doi.org/10.1021/ja067098n.
- 50 Kim Y. S., Hyun C. J., Kim I. A., and Gu M. B., Isolation and characterization of enantioselective DNA aptamers for ibuprofen, Bioorganic and Medicinal Chemistry. (2010) 18, no. 10, 3467–3473, 2-s2.0-77953135588, https://doi.org/10.1016/j.bmc.2010.03.074.
- 51 Carothers J. M., Goler J. A., Kapoor Y., Lara L., and Keasling J. D., Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity, Nucleic Acids Research. (2010) 38, no. 8, 2736–2747, 2-s2.0-77952499429, https://doi.org/10.1093/nar/gkq082, gkq082.
- 52 Pfeffer P. and Gohlke H., DrugScoreRNA—knowledge-based scoring function to predict RNA—Ligand interactions, Journal of Chemical Information and Modeling. (2007) 47, no. 5, 1868–1876, 2-s2.0-35248883964, https://doi.org/10.1021/ci700134p.
- 53 Jo M., Ahn J. Y., Lee J., Lee S., Hong S. W., Yoo J. W., Kang J., Dua P., Lee D. K., Hong S., and Kim S., Development of single-stranded DNA aptamers for specific bisphenol a detection, Oligonucleotides. (2011) 21, no. 2, 85–91, 2-s2.0-79954621273, https://doi.org/10.1089/oli.2010.0267.
- 54 Niazi J. H., Lee S. J., Kim Y. S., and Gu M. B., Bioorg. Med. Chem, 2008, 16, 1254–1261.
- 55 Mandal M., Boese B., Barrick J. E., Winkler W. C., and Breaker R. R., Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria, Cell. (2003) 113, no. 5, 577–586, 2-s2.0-0038210214, https://doi.org/10.1016/S0092-8674(03)00391-X.
- 56 Welz R. and Breaker R. R., Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis, RNA. (2007) 13, no. 4, 573–582, 2-s2.0-33947714417, https://doi.org/10.1261/rna.407707.
- 57 Kwon M. and Strobel S. A., Chemical basis of glycine riboswitch cooperativity, RNA. (2008) 14, no. 1, 25–34, 2-s2.0-38049025288, https://doi.org/10.1261/rna.771608.
- 58 Missailidis S. and Hardy A., Aptamers as inhibitors of target proteins, Expert Opinion on Therapeutic Patents. (2009) 19, no. 8, 1073–1082, 2-s2.0-68249092118, https://doi.org/10.1517/13543770903042337.
- 59 Mayer G., Ahmed M. S. L., Dolf A., Endl E., Knolle P. A., and Famulok M., Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures, Nature Protocols. (2010) 5, no. 12, 1993–2004, 2-s2.0-78649979777, https://doi.org/10.1038/nprot.2010.163.
- 60 Schneider D. J., Vanderslice R., and Gold L., Flow cell SELEX, US Patent 5,861,254, 1999.
- 61 Wilson C. and Szostak J. W., Isolation of a fluorophore-specific DNA aptamer with weak redox activity, Chemistry and Biology. (1998) 5, no. 11, 609–617, 2-s2.0-0032213173.
- 62 Yao C., Qi Y., Zhao Y., Xiang Y., Chen Q., and Fu W., Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE, Biosensors and Bioelectronics. (2009) 24, no. 8, 2499–2503, 2-s2.0-62649090104, https://doi.org/10.1016/j.bios.2008.12.036.
- 63 White R. J., Rowe A. A., and Plaxco K. W., Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors, Analyst. (2010) 135, no. 3, 589–594, 2-s2.0-77249160725, https://doi.org/10.1039/b921253a.
- 64 Hu J. and Easley C., A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis, Analyst. (2011) 136, no. 17, 3461–3468, https://doi.org/10.1039/c0an00842g.
- 65 Nguyen T. H., Steinbock L. J., Butt H. J., Helm M., and Berger R., Measuring single small molecule binding via rupture forces of a split aptamer, Journal of the American Chemical Society. (2011) 133, no. 7, 2025–2027, 2-s2.0-79951821790, https://doi.org/10.1021/ja1092002.
- 66 Lau P. S. and Li Y., Functional nucleic acids as molecular recognition elements for small organic and biological molecules, Current Organic Chemistr. (2011) 15, no. 4, 557–575, https://doi.org/10.2174/138527211794474537.
- 67 Cheng A. K. H., Sen D., and Yu H. Z., Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules, Bioelectrochemistry. (2009) 77, no. 1, 1–12, 2-s2.0-70349459294, https://doi.org/10.1016/j.bioelechem.2009.04.007.
- 68 Wang R. E., Zhang Y., Cai J., Cai W., and Gao T., Aptamer-based fluorescent biosensors, Current Medicinal Chemistry. (2011) 18, 4175–4184, https://doi.org/10.2174/092986711797189637.
- 69 Cho E. J., Lee J. W., and Ellington A. D., Applications of aptamers as sensors, Annual Review of Analytical Chemistry. (2009) 241–264, https://doi.org/10.1146/annurev.anchem.1.031207.112851.
- 70 McKeague M., Giamberardino A., and DeRosa M. C., V. Somerset, Advances in aptamer-based biosensors for food safety, Environmental Biosensors, 2011, InTech, 17–42.
- 71 Nutiu R. and Li Y., Structure-switching signaling aptamers, Journal of the American Chemical Society. (2003) 125, no. 16, 4771–4778, 2-s2.0-0037462083, https://doi.org/10.1021/ja028962o.
- 72 Lau P. S., Coombes B. K., and Li Y., A General approach to the construction of structure-switching reporters from RNA aptamers, Angewandte Chemie International. (2010) 49, 7938–7942, https://doi.org/10.1002/anie.201002621.
- 73 Carrasquilla C., Lau P. S., Li Y., and Brennan J. D., Stabilizing structure-switching signaling RNA aptamers by entrapment in sol-gel derived materials for solid-phase assay, Journal of the American Chemical Society. (2012) 134, 10998–11005, https://doi.org/10.1021/ja304064a.
- 74 Zheng D., Zou R., and Lou X., free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease, Analytical Chemistry. (2012) 84, 3554–3560, https://doi.org/10.1021/ac300690r.
- 75 Liang J., Chen Z., Guo L., and Li L., Electrochemical sensing of L-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites, Chemical Communications. (2011) 47, 5476–5478, https://doi.org/10.1039/c1cc10965k.
- 76 Chen J., Fang Z., Liu J., and Zeng L., A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer, Food Control. (2012) 25, 555–560, https://doi.org/10.1016/j.foodcont.2011.11.039.
- 77 Hun X. and Wang Z., L-Argininamide biosensor based on S1 nuclease hydrolysis signal amplification, Microchimica Acta. (2012) 176, 209–216, https://doi.org/10.1007/s00604-011-0673-5.
- 78 Zhu Z., Schmidt T., Mahrous M., Guieu V., Perrier S., Ravelet C., and Peyrin E., Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing, Analytica Chimica Acta. (2011) 707, 191–196, https://doi.org/10.1016/j.aca.2011.09.022.
- 79 Nutiu R. and Li Y., In vitro selection of structure-switching signaling aptamers, Angewandte Chemie. (2005) 44, 1061–1065, https://doi.org/10.1002/anie.200461848.
- 80 Null E. L. and Lu Y., Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers, Analyst. (2010) 135, no. 2, 419–422, 2-s2.0-76749112063, https://doi.org/10.1039/b921267a.
- 81 Famulok M., Hartig J. S., and Mayer G., Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chemical Reviews. (2007) 107, no. 9, 3715–3743, 2-s2.0-35148840942, https://doi.org/10.1021/cr0306743.
- 82 Vinkenborg J. L., Karnowski N., and Famulok M., Aptamers for allosteric regulation, Nature Chemical Biology. (2011) 7, no. 8, 519–527, 2-s2.0-79960487242, https://doi.org/10.1038/nchembio.609.
- 83 Win M. N., Liang J. C., and Smolke C. D., Frameworks for Programming Biological Function through RNA Parts and Devices, Chemistry and Biology. (2009) 16, no. 3, 298–310, 2-s2.0-62649171253, https://doi.org/10.1016/j.chembiol.2009.02.011.
- 84 Tang J. and Breaker R. R., Rational design of allosteric ribozymes, Chemistry and Biology. (1997) 4, no. 6, 453–459, 2-s2.0-0031171217.
- 85 Stojanovic M. N. and Kolpashchikov D. M., Modular aptameric sensors, Journal of the American Chemical Society. (2004) 126, no. 30, 9266–9270, 2-s2.0-3342918879, https://doi.org/10.1021/ja032013t.
- 86 Famulok M., Blind M., and Mayer G., Intramers as promising new tools in functional proteomics, Chemistry and Biology. (2001) 8, no. 10, 931–939, 2-s2.0-0034802897, https://doi.org/10.1016/S1074-5521(01)00070-9.
- 87 Niles J. C. and Marletta M. A., Utilizing RNA aptamers to probe a physiologically important heme-regulated cellular network, ACS Chemical Biology. (2006) 1, no. 8, 515–524, 2-s2.0-36749013931, https://doi.org/10.1021/cb6002527.
- 88 Li Y., Geyer C. R., and Sen D., Recognition of anionic porphyrins by DNA aptamers, Biochemistry. (1996) 35, no. 21, 6911–6922, 2-s2.0-0029945146, https://doi.org/10.1021/bi960038h.
- 89 Niles J. C., DeRisi J. L., and Marletta M. A., Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers, Proceedings of the National Academy of Sciences of the United States of America. (2009) 106, no. 32, 13266–13271, 2-s2.0-69449091315, https://doi.org/10.1073/pnas.0906370106.
- 90 Holahan M. R., Madularu D., McConnell E. M., Walsh R., and DeRosa M. C., Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia, PLoS One. (2011) 6, no. 7, 2-s2.0-79960231780, https://doi.org/10.1371/journal.pone.0022239, e22239.
- 91 Penner G., IVD Technology, 2012.
- 92 De Girolamo A., McKeague M., Miller J. D., DeRosa M. C., and Visconti A., Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column, Food Chemistry. (2011) 127, no. 3, 1378–1384, 2-s2.0-79952536385, https://doi.org/10.1016/j.foodchem.2011.01.107.
- 93 De Girolamo A., Le L., Penner G., Schena R., and Visconti A., Analytical performances of a DNA-ligand system using time-resolved fluorescence for the determination of ochratoxin A in wheat, Analytical and Bioanalytical Chemistry. (2012) 403, 2627–2634, https://doi.org/10.1007/s00216-012-6076-6.
- 94 Yang C., Lates V., Prieto-Simón B., Marty J., and Yang X., Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A, Biosensors and Bioelectronics. (2012) 32, 208–212, https://doi.org/10.1016/j.bios.2011.12.011.
- 95 Bonel L., Vidal J. C., Duato P., and Castillo J. R., An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer, Biosensors and Bioelectronics. (2011) 26, no. 7, 3254–3259, 2-s2.0-79951726656, https://doi.org/10.1016/j.bios.2010.12.036.
- 96 Guo Z., Ren J., Wang J., and Wang E., Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A, Talanta. (2011) 85, no. 5, 2517–2521, https://doi.org/10.1016/j.talanta.2011.08.015.
- 97 Wang L., Ma W., Chen W., Liu L., Ma W., Zhu Y., Xu L., Kuang H., and Xu C., An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection, Biosensors and Bioelectronics. (2011) 26, no. 6, 3059–3062, 2-s2.0-78651357050, https://doi.org/10.1016/j.bios.2010.11.040.
- 98 Kuang H., Chen W., Xu D., Xu L., Zhu Y., Liu L., Chu H., Peng C., Xu C., and Zhu S., Fabricated aptamer-based electrochemical ‘signal-off’ sensor of ochratoxin A, Biosensors and Bioelectronics. (2010) 26, no. 2, 710–716, 2-s2.0-77956935358, https://doi.org/10.1016/j.bios.2010.06.058.
- 99 Miyachi Y., Shimizu N., Ogino C., and Kondo A., Selection of DNA aptamers using atomic force microscopy, Nucleic Acids Research. (2010) 38, no. 4, article e21, 2-s2.0-77950350989.
- 100 Smith D., Kirschenheuter G. P., Charlton J., Guidot D. M., and Repine J. E., In vitro selection of RNA-based irreversible inhibitors of human neutrophil elastase, Chemistry and Biology. (1995) 2, no. 11, 741–750, 2-s2.0-0029395440.
- 101 Kim Y., Liu C., and Tan W., Aptamers generated by Cell SELEX for biomarker discovery, Biomarkers in Medicine. (2009) 3, no. 2, 193–202, 2-s2.0-68049096963, https://doi.org/10.2217/bmm.09.5.
- 102 Mendonsa S. D. and Bowser M. T., In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis, Analytical Chemistry. (2004) 76, no. 18, 5387–5392, 2-s2.0-4544303216, https://doi.org/10.1021/ac049857v.
- 103 Burke D. H. and Willis J. H., Recombination, RNA evolution, and bifunctional RNA molecules isolated through chimeric SELEX, RNA. (1998) 4, no. 9, 1165–1175, 2-s2.0-0031686486, https://doi.org/10.1017/S1355838298980542.
- 104 Smith J. D. and Gold L., Conditional-selex, US Patent 6706482, 2004.
- 105 Jensen K. B., Atkinson B. L., Willis M. C., Koch T. H., and Gold L., Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands, Proceedings of the National Academy of Sciences of the United States of America. (1995) 92, no. 26, 12220–12224, 2-s2.0-0029557118, https://doi.org/10.1073/pnas.92.26.12220.
- 106 Morris K. N., Jensen K. B., Julin C. M., Weil M., and Gold L., High affinity ligands from in vitro selection: complex targets, Proceedings of the National Academy of Sciences of the United States of America. (1998) 95, no. 6, 2902–2907, 2-s2.0-0032539924, https://doi.org/10.1073/pnas.95.6.2902.
- 107 Tsai R. Y. L. and Reed R. R., Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz, Molecular and Cellular Biology. (1998) 18, no. 11, 6447–6456, 2-s2.0-0031741736.
- 108 Martell R. E., Nevins J. R., and Sullenger B. A., Optimizing aptamer activity for gene therapy applications using expression cassette SELEX, Molecular Therapy. (2002) 6, no. 1, 30–34, 2-s2.0-0036665592, https://doi.org/10.1006/mthe.2002.0624.
- 109 Stoltenburg R., Reinemann C., and Strehlitz B., FluMag-SELEX as an advantageous method for DNA aptamer selection, Analytical and Bioanalytical Chemistry. (2005) 383, no. 1, 83–91, 2-s2.0-27644440466, https://doi.org/10.1007/s00216-005-3388-9.
- 110 Dobbelstein M. and Shenk T., In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries, Journal of Virology. (1995) 69, no. 12, 8027–8034, 2-s2.0-0028801335.
- 111 Coulter L. R., Landree M. A., and Cooper T. A., Identification of a new class of exonic splicing enhancers by in vivo selection, Molecular and Cellular Biology. (1997) 17, no. 4, 2143–2150, 2-s2.0-0030988942.
- 112 Kawakami J., Imanaka H., Yokota Y., and Sugimoto N., In vitro selection of aptamers that act with Zn2+, Journal of Inorganic Biochemistry. (2000) 82, no. 1–4, 197–206, 2-s2.0-0033741862, https://doi.org/10.1016/S0162-0134(00)00158-6.
- 113 Keefe A. D. and Cload S. T., SELEX with modified nucleotides, Current Opinion in Chemical Biology. (2008) 12, no. 4, 448–456, 2-s2.0-50449105530, https://doi.org/10.1016/j.cbpa.2008.06.028.
- 114 Gong Q., Wang J., Ahmad K. M., Csordas A. T., Zhou J., Nie J., Stewart R., Thomson J. A., Rossi J. J., and Soh H. T., Selection strategy to generate aptamer pairs that bind to distinct sites on protein targets, Analytical Chemistry. (2012) 84, no. 12, 5365–5371, 2-s2.0-84862583911, https://doi.org/10.1021/ac300873p.
- 115 Huang C. J., Lin H. I., Shiesh S. C., and Lee G. B., Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX), Biosensors and Bioelectronics. (2010) 25, no. 7, 1761–1766, 2-s2.0-77952294160, https://doi.org/10.1016/j.bios.2009.12.029.
- 116 Lou X., Qian J., Xiao Y., Viel L., Gerdon A. E., Lagally E. T., Atzberger P., Tarasow T. M., Heeger A. J., and Soh H. T., Micromagnetic selection of aptamers in microfluidic channels, Proceedings of the National Academy of Sciences of the United States of America. (2009) 106, no. 9, 2989–2994, 2-s2.0-62549099947, https://doi.org/10.1073/pnas.0813135106.
- 117 Nitsche A., Kurth A., Dunkhorst A., Pänke O., Sielaff H., Junge W., Muth D., Scheller F., Stöcklein W., Dahmen C., Pauli G., and Kage A., One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX, BMC Biotechnology. (2007) 7, no. article no. 48, 2-s2.0-34848813621, https://doi.org/10.1186/1472-6750-7-48.
- 118 Jolma A., Kivioja T., Toivonen J., Cheng L., Wei G., Enge M., Taipale M., Vaquerizas J. M., Yan J., Sillanpää M. J., Bonke M., Palin K., Talukder S., Hughes T. R., Luscombe N. M., Ukkonen E., and Taipale J., Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities, Genome Research. (2010) 20, no. 6, 861–873, 2-s2.0-77953006022, https://doi.org/10.1101/gr.100552.109.
- 119 Wu L. and Curran J. F., An allosteric synthetic DNA, Nucleic Acids Research. (1999) 27, no. 6, 1512–1516, 2-s2.0-0033559494, https://doi.org/10.1093/nar/27.6.1512.
- 120 Reid D. C., Chang B. L., Gunderson S. I., Alpert L., Thompson W. A., and Fairbrother W. G., Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence, RNA. (2009) 15, no. 12, 2385–2397, 2-s2.0-73249131626, https://doi.org/10.1261/rna.1821809.
- 121 Berezovski M., Musheev M., Drabovich A., and Krylov S. N., Non-SELEX selection of aptamers, Journal of the American Chemical Society. (2006) 128, no. 5, 1410–1411, 2-s2.0-32244436665, https://doi.org/10.1021/ja056943j.
- 122 Brody E. N., Willis M. C., Smith J. D., Jayasena S., Zichi D., and Gold L., The use of aptamers in large arrays for molecular diagnostics, Molecular Diagnosis. (1999) 4, no. 4, 381–388, 2-s2.0-0036085671, https://doi.org/10.1016/S1084-8592(99)80014-9.
- 123 Wen J. D. and Gray D. M., Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX, Nucleic acids research. (2004) 32, no. 22, article e182, 2-s2.0-16544373958.
- 124 Roulet E., Busso S., Camargo A. A., Simpson A. J. G., Mermod N., and Bucher P., High-throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites, Nature Biotechnology. (2002) 20, no. 8, 831–835, 2-s2.0-0036022523, https://doi.org/10.1038/nbt718.
- 125 Klußmann S., Nolte A., Bald R., Erdmann V. A., and Fürste J. P., Mirror-image RNA that binds D-adenosine, Nature Biotechnology. (1996) 14, no. 9, 1112–1115.
- 126 Vater A., Jarosch F., Buchner K., and Klussmann S., Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX, Nucleic acids research. (2003) 31, no. 21, article 130, 2-s2.0-0642334595.
- 127 Ohuchi S. P., Ohtsu T., and Nakamura Y., Selection ofRNA aptamers againstrecombinant transforming growth factor-β type III receptor displayed oncell surface, Biochimie. (2006) 88, no. 7, 897–904, 2-s2.0-33746495033, https://doi.org/10.1016/j.biochi.2006.02.004.
- 128 White R., Rusconi C., Scardino E., Wolberg A., Lawson J., Hoffman M., and Sullenger B., Generation of species cross-reactive aptamers using “toggle” SELEX, Molecular Therapy. (2001) 4, no. 6, 567–573, 2-s2.0-0035668696, https://doi.org/10.1006/mthe.2001.0495.
- 129 Cassiday L. A. and Maher III L. J., Yeast genetic selections to optimize RNA decoys for transcription factor NF-κB, Proceedings of the National Academy of Sciences of the United States of America. (2003) 100, no. 7, 3930–3935, 2-s2.0-0037390035, https://doi.org/10.1073/pnas.0736013100.
- 130 Ellington A. D. and Szostak J. W., Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature. (1992) 355, no. 6363, 850–852, 2-s2.0-0026599465, https://doi.org/10.1038/355850a0.
- 131 Huizenga D. E. and Szostak J. W., A DNA aptamer that binds adenosine and ATP, Biochemistry. (1995) 34, no. 2, 656–665, 2-s2.0-0028965943.
- 132 Harada K. and Frankel A. D., Identification of two novel arginine binding DNAs, EMBO Journal. (1995) 14, no. 23, 5798–5811, 2-s2.0-0028823341.
- 133 Yang Q., Goldstein I. J., Mei H.-Y., and Engelke D. R., DNA ligands that bind tightly and selectively to cellobiose, Proceedings of the National Academy of Sciences of the United States of America. (1998) 95, no. 10, 5462–5467, 2-s2.0-0032510785, https://doi.org/10.1073/pnas.95.10.5462.
- 134 Rink S. M., Shen J. C., and Loeb L. A., Creation of RNA molecules that recognize the oxidative lesion 7,8-dihydro-8-hydroxy-2′-deoxyguanosine (8-oxodG) in DNA, Proceedings of the National Academy of Sciences of the United States of America. (1998) 95, no. 20, 11619–11624, 2-s2.0-0032578470.
- 135 Kato T., Takemura T., Yano K., Ikebukuro K., and Karube I., In vitro selection of DNA aptamers which bind to cholic acid, Biochimica et Biophysica Acta. Gene Structure and Expression. (2000) 1493, no. 1-2, 12–18, 2-s2.0-0034618467, https://doi.org/10.1016/S0167-4781(00)00080-4.
- 136 Okazawa A., Maeda H., Fukusaki E., Katakura Y., and Kobayashi A., In vitro selection of hematoporphyrin binding DNA aptamers, Bioorganic and Medicinal Chemistry Letters. (2000) 10, no. 23, 2653–2656, 2-s2.0-0034606402, https://doi.org/10.1016/S0960-894X(00)00540-0.
- 137 Vianini E., Palumbo M., and Gatto B., In vitro selection of DNA aptamers that bind L-tyrosinamide, Bioorganic and Medicinal Chemistry. (2001) 9, no. 10, 2543–2548, 2-s2.0-0034846294, https://doi.org/10.1016/S0968-0896(01)00054-2.
- 138 Masud M. M., Kuwahara M., Ozaki H., and Sawai H., Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX, Bioorganic and Medicinal Chemistry. (2004) 12, no. 5, 1111–1120, 2-s2.0-1342279558, https://doi.org/10.1016/j.bmc.2003.12.009.
- 139 Mann D., Reinemann C., Stoltenburg R., and Strehlitz B., In vitro selection of DNA aptamers binding ethanolamine, Biochemical and Biophysical Research Communications. (2005) 338, no. 4, 1928–1934, 2-s2.0-27844435116, https://doi.org/10.1016/j.bbrc.2005.10.172.
- 140 Sando S., Narita A., and Aoyama Y., Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye, ChemBioChem. (2007) 8, no. 15, 1795–1803, 2-s2.0-35348969892, https://doi.org/10.1002/cbic.200700325.
- 141 Kim Y. S., Jung H. S., Matsuura T., Lee H. Y., Kawai T., and Gu M. B., Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip, Biosensors and Bioelectronics. (2007) 22, no. 11, 2525–2531, 2-s2.0-33947579554, https://doi.org/10.1016/j.bios.2006.10.004.
- 142 Hayashi G., Hagihara M., Dohno C., and Nakatani K., Photoregulation of a peptide-RNA interaction on a gold surface, Journal of the American Chemical Society. (2007) 129, no. 28, 8678–8679, 2-s2.0-34548380948, https://doi.org/10.1021/ja071298x.
- 143 Niazi J. H., Lee S. J., and Gu M. B., Single-stranded DNA aptamers specific for antibiotics tetracyclines, Bioorganic and Medicinal Chemistry. (2008) 16, no. 15, 7245–7253, 2-s2.0-48449084598, https://doi.org/10.1016/j.bmc.2008.06.033.
- 144 Ohsawa K., Kasamatsu T., Nagashima J. I., Hanawa K., Kuwahara M., Ozaki H., and Sawai H., Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid, Analytical Sciences. (2008) 24, no. 1, 167–172, 2-s2.0-42949089427, https://doi.org/10.2116/analsci.24.167.
- 145 Wochner A., Menger M., Orgel D., Cech B., Rimmele M., Erdmann V. A., and Glökler J., A DNA aptamer with high affinity and specificity for therapeutic anthracyclines, Analytical Biochemistry. (2008) 373, no. 1, 34–42, 2-s2.0-37049008251, https://doi.org/10.1016/j.ab.2007.09.007.
- 146 Walsh R. and DeRosa M. C., Retention of function in the DNA homolog of the RNA dopamine aptamer, Biochemical and Biophysical Research Communications. (2009) 388, no. 4, 732–735, 2-s2.0-69949164535, https://doi.org/10.1016/j.bbrc.2009.08.084.
- 147 Miyachi Y., Shimizu N., Ogino C., Fukuda H., and Kondo A., Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose, Bioorganic and Medicinal Chemistry Letters. (2009) 19, no. 13, 3619–3622, 2-s2.0-66349122880, https://doi.org/10.1016/j.bmcl.2009.04.130.
- 148 Joeng C. B., Niazi J. H., Lee S. J., and Gu M. B., ssDNA aptamers that recognize diclofenac and 2-anilinophenylacetic acid, Bioorganic and Medicinal Chemistry. (2009) 17, no. 15, 5380–5387, 2-s2.0-67651100853, https://doi.org/10.1016/j.bmc.2009.06.044.
- 149 He J., Liu Y., Fan M., and Liu X., Isolation and identification of the DNA aptamer target to acetamiprid, Journal of Agricultural and Food Chemistry. (2011) 59, no. 5, 1582–1586, 2-s2.0-79952167193, https://doi.org/10.1021/jf104189g.
- 150 Song K. M., Cho M., Jo H., Min K., Jeon S. H., Kim T., Han M. S., Ku J. K., and Ban C., Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer, Analytical Biochemistry. (2011) 415, no. 2, 175–181, 2-s2.0-79958258087, https://doi.org/10.1016/j.ab.2011.04.007.
- 151 Yang X., Bing T., Mei H., Fang C., Cao Z., and Shangguan D., Characterization and application of a DNA aptamer binding to l-tryptophan, Analyst. (2011) 136, no. 3, 577–585, 2-s2.0-78751512569, https://doi.org/10.1039/c0an00550a.
- 152 Barthelmebs L., Jonca J., Hayat A., Prieto-Simon B., and Marty J. L., Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine, Food Control. (2011) 22, no. 5, 737–743, 2-s2.0-78650302950, https://doi.org/10.1016/j.foodcont.2010.11.005.
- 153 Renaud De La Faverie A., Hamon F., Di Primo C., Largy E., Dausse E., Delaurire L., Landras-Guetta C., Toulmé J. J., Teulade-Fichou M. P., and Mergny J. L., Nucleic acids targeted to drugs: SELEX against a quadruplex ligand, Biochimie. (2011) 93, no. 8, 1357–1367, 2-s2.0-79960700836, https://doi.org/10.1016/j.biochi.2011.05.022.
- 154 Wang L., Liu X., Zhang Q., Zhang C., Liu Y., Tu K., and Tu J., Selection of DNA aptamers that bind to four organophosphorus pesticides, Biotechnology Letters. (2012) 34, no. 5, 869–874, 2-s2.0-84862795046, https://doi.org/10.1007/s10529-012-0850-6.
- 155 Xu S., Yuan H., Chen S., Xu A., Wang J., and Wu L., Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis, Analytical Biochemistry. (2012) 423, no. 2, 195–201, 2-s2.0-84862808881, https://doi.org/10.1016/j.ab.2012.01.026.
- 156 Mehta J., Rouah-Martin E., Van Dorst B., Maes B., Herrebout W., Scippo M.-L., Dardenne F., Blust R., and Robbens J., Selection and characterization of PCB-binding DNA aptamers, Analytical Chemistry. (2012) 84, no. 3, 1669–1676, 2-s2.0-84856712958, https://doi.org/10.1021/ac202960b.
- 157 Song K.-M., Jeong E., Jeon W., Cho M., and Ban C., Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods, Analytical and Bioanalytical Chemistry. (2012) 402, no. 6, 2153–2161, 2-s2.0-84858705233, https://doi.org/10.1007/s00216-011-5662-3.
- 158 Szostak J. W., Enzymatic activity of the conserved core of a group I self- splicing intron, Nature. (1986) 322, no. 6074, 83–86, 2-s2.0-0022467671.
- 159 Majerfeld I. and Yarus M., An RNA pocket for an aliphatic hydrophobe, Nature Structural Biology. (1994) 1, no. 5, 287–292, 2-s2.0-0028426892.
- 160 Lorsch J. R. and Szostak J. W., In vitro selection of RNA aptamers specific for cyanocobalamin, Biochemistry. (1994) 33, no. 4, 973–982, 2-s2.0-0028058105.
- 161
Burgstaller P. and
Famulok M., Isolation of RNA aptamers for biological cofactors by in vitro selection, Angewandte Chemie. (1994) 33, no. 10, 1084–1087, 2-s2.0-0027995790.
10.1002/anie.199410841 Google Scholar
- 162 Lato S. M., Boles A. R., and Ellington A. D., In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution, Chemistry and Biology. (1995) 2, no. 5, 291–303, 2-s2.0-0029294685, https://doi.org/10.1016/1074-5521(95)90048-9.
- 163 Wallis M. G., Von Ahsen U., Schroeder R., and Famulok M., A novel RNA motif for neomycin recognition, Chemistry and Biology. (1995) 2, no. 8, 543–552, 2-s2.0-0029347016, https://doi.org/10.1016/1074-5521(95)90188-4.
- 164 Wang Y. and Rando R. R., Specific binding of aminoglycoside antibiotics to RNA, Chemistry and Biology. (1995) 2, 281–290, https://doi.org/10.1016/1074-5521(95)90047-0.
- 165 Lauhon C. T. and Szostak J. W., RNA aptamers that bind flavin and nicotinamide redox cofactors, Journal of the American Chemical Society. (1995) 117, no. 4, 1246–1257, 2-s2.0-0029138009.
- 166 Wilson C., Nix J., and Szostak J., Functional requirements for specific ligand recognition by a biotin-binding rna pseudoknot, Biochemistry. (1998) 37, no. 41, 14410–14419, 2-s2.0-0032514717, https://doi.org/10.1021/bi981371j.
- 167 Mannironi C., Di Nardo A., Fruscoloni P., and Tocchini-Valentini G. P., In vitro selection of dopamine RNA ligands, Biochemistry. (1997) 36, no. 32, 9726–9734, 2-s2.0-0030878053, https://doi.org/10.1021/bi9700633.
- 168 Haller A. A. and Sarnow P., In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules, Proceedings of the National Academy of Sciences of the United States of America. (1997) 94, no. 16, 8521–8526, 2-s2.0-0030832285, https://doi.org/10.1073/pnas.94.16.8521.
- 169 Welch M., Majerfeld I., and Yarus M., 23S rRNA similarity from selection for peptidyl transferase mimicry, Biochemistry. (1997) 36, no. 22, 6614–6623, 2-s2.0-0030970582, https://doi.org/10.1021/bi963135j.
- 170 Burke D. H., Hoffman D. C., Brown A., Hansen M., Pardi A., and Gold L., RNA aptamers to the peptidyl transferase inhibitor chloramphenicol, Chemistry and Biology. (1997) 4, no. 11, 833–843, 2-s2.0-0031278397.
- 171 Wallis M. G., Streicher B., Wank H., Von Ahsen U., Clodi E., Wallace S. T., Famulok M., and Schroeder R., In vitro selection of a viomycin-binding RNA pseudoknot, Chemistry and Biology. (1997) 4, no. 5, 357–366, 2-s2.0-0031149880.
- 172 Holeman L. A., Robinson S. L., Szostak J. W., and Wilson C., Isolation and characterization of fluorophore-binding RNA aptamers, Folding and Design. (1998) 3, no. 6, 423–431, 2-s2.0-0032437793, https://doi.org/10.1016/S1359-0278(98)00059-5.
- 173 Wallace S. T. and Schroede R., In vitro selection and characterization of streptomycin-binding RNAs: recognition discrimination between antibiotics, RNA. (1998) 4, no. 1, 112–123, 2-s2.0-0031965013.
- 174 Majerfeld I. and Yarus M., Isoleucine:RNA sites with associated coding sequences, RNA. (1998) 4, no. 4, 471–478, 2-s2.0-0031923050.
- 175 Kiga D., Futamura Y., Sakamoto K., and Yokoyama S., An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition, Nucleic Acids Research. (1998) 26, no. 7, 1755–1760, 2-s2.0-0032052277, https://doi.org/10.1093/nar/26.7.1755.
- 176 Grate D. and Wilson C., Laser-mediated, site-specific inactivation of RNA transcripts, Proceedings of the National Academy of Sciences of the United States of America. (1999) 96, no. 11, 6131–6136, 2-s2.0-0033033283, https://doi.org/10.1073/pnas.96.11.6131.
- 177 Khvorova A., Kwak Y. G., Tamkun M., Majerfeld I., and Yarus M., RNAs that bind and change the permeability of phospholipid membranes, Proceedings of the National Academy of Sciences of the United States of America. (1999) 96, no. 19, 10649–10654, 2-s2.0-0032844970, https://doi.org/10.1073/pnas.96.19.10649.
- 178 Koizumi M. and Breaker R. R., Molecular recognition of cAMP by an RNA aptamer, Biochemistry. (2000) 39, no. 30, 8983–8992, 2-s2.0-0034254511, https://doi.org/10.1021/bi000149n.
- 179 Jhaveri S., Rajendran M., and Ellington A. D., In vitro selection of signaling aptamers, Nature Biotechnology. (2000) 18, no. 12, 1293–1297, 2-s2.0-0033664254, https://doi.org/10.1038/82414.
- 180 Mannironi C., Scerch C., Fruscoloni P., and Tocchini-Valentini G. P., Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif, RNA. (2000) 6, no. 4, 520–527, 2-s2.0-0034003238, https://doi.org/10.1017/S1355838200991763.
- 181 Gebhardt K., Shokraei A., Babaie E., and Lindqvist B. H., RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody, Biochemistry. (2000) 39, no. 24, 7255–7265, 2-s2.0-0034691283, https://doi.org/10.1021/bi000295t.
- 182 Cowan J. A., Ohyama T., Wang D., and Natarajan K., Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions, Nucleic Acids Research. (2000) 28, no. 15, 2935–2942, 2-s2.0-0034255115.
- 183 Schürer H., Stembera K., Knoll D., Mayer G., Blind M., Förster H. H., Famulok M., Welzel P., and Hahn U., Aptamers that bind to the antibiotic moenomycin A, Bioorganic and Medicinal Chemistry. (2001) 9, no. 10, 2557–2563, 2-s2.0-0034847830, https://doi.org/10.1016/S0968-0896(01)00030-X.
- 184 Jeong S., Eom T.-Y., Kim S.-J., Lee S.-W., and Yu J., In vitro selection of the RNA Aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion, Biochemical and Biophysical Research Communications. (2001) 281, no. 1, 237–243, 2-s2.0-0034814741, https://doi.org/10.1006/bbrc.2001.4327.
- 185 Berens C., Thain A., and Schroeder R., A tetracycline-binding RNA aptamer, Bioorganic and Medicinal Chemistry. (2001) 9, no. 10, 2549–2556, 2-s2.0-0034853943, https://doi.org/10.1016/S0968-0896(01)00063-3.
- 186 Kwon M., Chun S. M., Jeong S., and Yu J., In vitro selection of RNA against kanamycin B, Molecules and Cells. (2001) 11, no. 3, 303–311, 2-s2.0-0035973560.
- 187 Meli M., Vergne J., Décout J.-L., and Maurel M.-C., Adenine-aptamer complexes. A bipartite RNA site that binds the adenine nucleic base, Journal of Biological Chemistry. (2002) 277, no. 3, 2104–2111, 2-s2.0-0037127207, https://doi.org/10.1074/jbc.M107130200.
- 188 Roychowdhury-Saha M., Lato S. M., Shank E. D., and Burke D. H., Flavin recognition by an RNA aptamer targeted toward FAD, Biochemistry. (2002) 41, no. 8, 2492–2499, 2-s2.0-0037176834, https://doi.org/10.1021/bi015719d.
- 189 Lozupone C., Changayil S., Majerfeld I., and Yarus M., Selection of the simplest RNA that binds isoleucine, RNA. (2003) 9, no. 11, 1315–1322, 2-s2.0-0142240407, https://doi.org/10.1261/rna.5114503.
- 190 Vaish N. K., Larralde R., Fraley A. W., Szostak J. W., and McLaughlin L. W., A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality, Biochemistry. (2003) 42, no. 29, 8842–8851, 2-s2.0-0042848694, https://doi.org/10.1021/bi027354i.
- 191 Huang Z. and Szostak J. W., Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer, RNA. (2003) 9, no. 12, 1456–1463, 2-s2.0-0344874269, https://doi.org/10.1261/rna.5990203.
- 192 Brockstedt U., Uzarowska A., Montpetit A., Pfau W., and Labuda D., In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines, Biochemical and Biophysical Research Communications. (2004) 313, no. 4, 1004–1008, 2-s2.0-0346728743, https://doi.org/10.1016/j.bbrc.2003.12.030.
- 193 Sazani P. L., Larralde R., and Szostak J. W., A small aptamer with strong and specific recognition of the triphosphate of ATP, Journal of the American Chemical Society. (2004) 126, no. 27, 8370–8371, 2-s2.0-3142758746, https://doi.org/10.1021/ja049171k.
- 194 Legiewicz M. and Yarus M., A more complex isoleucine aptamer with a cognate triplet, Journal of Biological Chemistry. (2005) 280, no. 20, 19815–19822, 2-s2.0-21244459165, https://doi.org/10.1074/jbc.M502329200.
- 195 Majerfeld I., Puthenvedu D., and Yarus M., RNA affinity for molecular L-histidine; genetic code origins, Journal of Molecular Evolution. (2005) 61, no. 2, 226–235, 2-s2.0-24744452849, https://doi.org/10.1007/s00239-004-0360-9.
- 196 Lévesque D., Beaudoin J. D., Roy S., and Perreault J. P., In vitro selection and characterization of RNA aptamers binding thyroxine hormone, Biochemical Journal. (2007) 403, no. 1, 129–138, 2-s2.0-34147108104, https://doi.org/10.1042/BJ20061216.
- 197 Morse D. P., Direct selection of RNA beacon aptamers, Biochemical and Biophysical Research Communications. (2007) 359, no. 1, 94–101, 2-s2.0-34249734771, https://doi.org/10.1016/j.bbrc.2007.05.072.
- 198 Lee H. W., Robinson S. G., Bandyopadhyay S., Mitchell R. H., and Sen D., Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector, Journal of Molecular Biology. (2007) 371, no. 5, 1163–1173, 2-s2.0-34547585981, https://doi.org/10.1016/j.jmb.2007.06.042.
- 199 Constantin T. P., Silva G. L., Robertson K. L., Hamilton T. P., Fague K., Waggoner A. S., and Armitage B. A., Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules, Organic Letters. (2008) 10, no. 8, 1561–1564, 2-s2.0-44449122485, https://doi.org/10.1021/ol702920e.
- 200 Endo K. and Nakamura Y., A binary Cy3 aptamer probe composed of folded modules, Analytical Biochemistry. (2010) 400, 103–109, https://doi.org/10.1016/j.ab.2010.01.015.
- 201 Lee J., Lee K. H., Jeon J., Dragulescu-Andrasi A., Xiao F., and Rao J., Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging, ACS Chemical Biology. (2010) 5, no. 11, 1065–1074, 2-s2.0-78649643879, https://doi.org/10.1021/cb1001894.
- 202 Sinha J., Reyes S. J., and Gallivan J. P., Reprogramming bacteria to seek and destroy an herbicide, Nature Chemical Biology. (2010) 6, no. 6, 464–470, 2-s2.0-77952507419, https://doi.org/10.1038/nchembio.369.
- 203 Horii K., Omi K., Yoshida Y., Imai Y., Sakai N., Oka A., Masuda H., Furuichi M., Tanimoto T., and Waga I., Development of a sphingosylphosphorylcholine detection system using RNA aptamers, Molecules. (2010) 15, no. 8, 5742–5755, 2-s2.0-77956126713, https://doi.org/10.3390/molecules15085742.
- 204 Murata A., Sato S. I., Kawazoe Y., and Uesugi M., Small-molecule fluorescent probes for specific RNA targets, Chemical Communications. (2011) 47, no. 16, 4712–4714, 2-s2.0-79953684293, https://doi.org/10.1039/c1cc10393h.
- 205 Paige J. S., Wu K. Y., and Jaffrey S. R., RNA mimics of green fluorescent protein, Science. (2011) 333, no. 6042, 642–646, 2-s2.0-79960959180, https://doi.org/10.1126/science.1207339.
- 206 Bala J., Bhaskar A., Varshney A., Singh A. K., Dey S., and Yadava P., In vitro selected RNA aptamer recognizing glutathione induces ROS-mediated apoptosis in the human breast cancer cell line MCF 7, RNA Biology. (2011) 8, no. 1, 101–111, 2-s2.0-79952208880, https://doi.org/10.4161/rna.8.1.14116.
- 207 Lau J. L., Baksh M. M., Fiedler J. D., Brown S. D., Kussrow A., Bornhop D. J., Ordoukhanian P., and Finn M. G., Evolution and protein packaging of small-molecule RNA aptamers, ACS Nano. (2011) 5, 7722–7729, https://doi.org/10.1021/nn2006927.
- 208 Flinders J., DeFina S. C., Brackett D. M., Baugh C., Wilson C., and Dieckmann T., Recognition of planar and nonplanar ligands in the malachite green—RNA aptamer complex, ChemBioChem. (2004) 5, no. 1, 62–72, 2-s2.0-0346457132, https://doi.org/10.1002/cbic.200300701.
- 209 Cruz-Aguado J. A. and Penner G., Fluorescence polarization based displacement assay for the determination of small molecules with aptamers, Analytical Chemistry. (2008) 80, no. 22, 8853–8855, 2-s2.0-56449123401, https://doi.org/10.1021/ac8017058.
- 210 Guedin A., Lacroix L., and Mergny J. L., Thermal melting studies of ligand DNA interactions, Methods in Molecular Biology. (2010) 613, 25–35, https://doi.org/10.1007/978-1-60327-418-0_2.
- 211 Lin P., Chen R., Lee C., Chang Y., Chen C., and Chen W., Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry, Colloids and Surfaces B. (2011) 88, 552–558, https://doi.org/10.1016/j.colsurfb.2011.07.032.
- 212 Lee J. H., Canny M. D., De Erkenez A., Krilleke D., Ng Y. S., Shima D. T., Pardi A., and Jucker F., A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165, Proceedings of the National Academy of Sciences of the United States of America. (2005) 102, no. 52, 18902–18907, 2-s2.0-30044436689, https://doi.org/10.1073/pnas.0509069102.
- 213 Sultan Y., Walsh R., Monreal C., and DeRosa M. C., Preparation of functional aptamer films using layer-by-layer self-assembly, Biomacromolecules. (2009) 10, no. 5, 1149–1154, 2-s2.0-66149143563, https://doi.org/10.1021/bm8014126.
- 214 Deng Q., German I., Buchanan D., and Kennedy R. T., Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Analytical Chemistry. (2001) 73, no. 22, 5415–5421, 2-s2.0-0035891256, https://doi.org/10.1021/ac0105437.
- 215 Drabovich A. P., Berezovski M., Okhonin V., and Krylov S. N., Selection of smart aptamers by methods of kinetic capillary electrophoresis, Analytical Chemistry. (2006) 78, no. 9, 3171–3178, 2-s2.0-33646582961, https://doi.org/10.1021/ac060144h.
- 216 Bao J., Krylova S. M., Reinstein O., Johnson P. E., and Krylov S. N., Label-free solution-based kinetic study of aptamer-small molecule interactions by kinetic capillary electrophoresis with UV detection revealing how kinetics control equilibrium, Analytical Chemistry. (2011) 83, 8387–8390, https://doi.org/10.1021/ac2026699.
- 217 Turgeon R. T., Fonslow B. R., Jing M., and Bowser M. T., Measuring aptamer equilibria using gradient micro free flow electrophoresis, Analytical Chemistry. (2010) 82, no. 9, 3636–3641, 2-s2.0-77951851948, https://doi.org/10.1021/ac902877v.
- 218 Hall B., Arshad S., Seo K., Bowman C., Corley M., Jhaveri S. D., and Ellington A. D., In vitro selection of RNA aptamers to a protein target by filter immobilization, Current Protocols in Molecular Biology. (2009) no. 88, 24.3.1–24.3.27, 2-s2.0-76149101950, https://doi.org/10.1002/0471142727.mb2403s52.
- 219 Gaillard C. and Strauss F., DNA loops and semicatenated DNA junctions, BMC Biochemistry. (2000) 1, article no. 1, 1–7, 2-s2.0-0001779683, https://doi.org/10.1186/1471-2091-1-1.
- 220 Baaske P., Wienken C. J., Reineck P., Duhr S., and Braun D., Optical thermophoresis for quantifying the buffer dependence of aptamer binding, Angewandte Chemie. (2010) 49, no. 12, 2238–2241, 2-s2.0-77949382968, https://doi.org/10.1002/anie.200903998.
- 221 Potty A. S. R., Kourentzi K., Fang H., Jackson G. W., Zhang X., Legge G. B., and Willson R. C., Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor, Biopolymers. (2009) 91, no. 2, 145–156, 2-s2.0-59949083488, https://doi.org/10.1002/bip.21097.
- 222 Oh S. S., Plakos K., Lou X., Xiao Y., and Soh H. T., In vitro selection of structure-switching, self-reporting aptamers, Proceedings of the National Academy of Sciences of the United States of America. (2010) 107, no. 32, 14053–14058, 2-s2.0-77956290872, https://doi.org/10.1073/pnas.1009172107.
- 223 Regulski E. E. and Breaker R. R., In-line probing analysis of riboswitches, Methods in Molecular Biology. (2008) 419, 53–67, 2-s2.0-42949123039.
- 224 Yoshida W., Sode K., and Ikebukuro K., Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers, Biochemical and Biophysical Research Communications. (2006) 348, no. 1, 245–252, 2-s2.0-33746763673, https://doi.org/10.1016/j.bbrc.2006.07.069.
- 225 McManus S. A. and Li Y., Multiple occurrences of an efficient self-phosphorylating deoxyribozyme motif, Biochemistry. (2007) 46, no. 8, 2198–2204, 2-s2.0-33847622949, https://doi.org/10.1021/bi061613c.