Protease-assisted process for tryptophan release from pumpkin (Cucurbita maxima) seed protein extracts
Marta A. Vargas
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Contribution: Conceptualization, Data curation, Investigation, Methodology, Writing - original draft
Search for more papers by this authorClaudia Bernal
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
Contribution: Conceptualization, Resources, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ronny Martínez
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Correspondence
Ronny Martínez, Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile.
Email: [email protected]
Contribution: Conceptualization, Methodology, Project administration, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorMarta A. Vargas
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Contribution: Conceptualization, Data curation, Investigation, Methodology, Writing - original draft
Search for more papers by this authorClaudia Bernal
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
Contribution: Conceptualization, Resources, Writing - review & editing
Search for more papers by this authorCorresponding Author
Ronny Martínez
Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
Correspondence
Ronny Martínez, Laboratorio de Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile.
Email: [email protected]
Contribution: Conceptualization, Methodology, Project administration, Resources, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Squash pumpkin (Cucurbita maxima) seeds are currently underused food ingredient, despite being a high tryptophan-rich protein source. In this study, we obtained and characterized a protein hydrolysate from defatted C. maxima seed meal, focusing on the effect of the used protease on tryptophan release. Protein hydrolysates were prepared using five different proteases and compared regarding the degree of hydrolysis (DH), free tryptophan content, hydrolysis kinetics, and potential antioxidant activity over reaction time. Protein hydrolysis using Flavourzyme resulted in the highest DH (35.6%), and free tryptophan concentration (337.9 mg/100 g), whereas hydrolysates obtained using Chymotrypsin showed the highest in vitro antioxidant activity (oxygen radical absorbance capacity [ORAC]) (371.1 mmol TE/100 g DM of protein extract). Our results show that protein hydrolysates from C. maxima seeds are a promising source of free tryptophan, with high antioxidant activity, supporting its potential as a food ingredient or for nutraceutical applications.
Practical application
C. maxima seeds are a promising source of free tryptophan, and its functionalization through hydrolysis showed a significant effect increasing tryptophan release and antioxidant activity, increasing its potential for ingredient or nutraceutical applications.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
jfpp16290-sup-0001-TableS1.docxWord 2007 document , 14.1 KB | Table S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Al-Anoos, I. M., El-dengawy, R. A. H., & Hasanin, H. A. (2015). Studies on chemical composition of some Egyptian and Chinese pumpkin (Cucurbita maxima) seed varieties. Journal of Plant Science and Research, 2(2), 137.
- AOAC. (1990). Official methods of analysis. 15th edition, Washington DC: Association of Official Analytical Chemists.
- Benítez, R., Ibarz, A., & Pagan, J. (2008). Protein hydrolysates: Processes and applications. Acta Bioquímica Clínica Latinoamericana, 42(2), 227–236.
- Biggs, A. I. (1954). A spectrophotometric determination of the dissociation constants of p-nitrophenol. Transactions of the Faraday Society, 50, 880.
10.1039/tf9545000800 Google Scholar
- Bucko, S. D., Katona, J. M., Popovic, L. M., Vaštag, Z. G., & Petrovic, L. B. (2016). Functional properties of pumpkin (Cucurbita pepo) seed protein isolate and hydrolysate. Journal of the Serbian Chemical Society, 81, 35–46. https://doi.org/10.2298/JSC150615081B
- Bučko, S., Katona, J., Popović, L., Vaštag, Z., Petrović, L., & Vučinić-Vasić, M. (2015). Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. LWT—Food Science and Technology, 64, 609–615. https://doi.org/10.1016/j.lwt.2015.06.054
- El-Soukkary, F. (2001). Evaluation of pumpkin seed products for bread fortification. Plant Foods for Human Nutrition, 56, 365–384. https://doi.org/10.1023/A:10118020147703
- FAOSTAT. (2016). Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. http://faostat.fao.org/site/291/default.aspx
- Glew, R. H., Glew, R., Chuang, L., Huang, Y., Millson, M., Constans, D., & Vanderjagt, D. (2006). Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods for Human Nutrition, 61, 51–56. https://doi.org/10.1007/s11130-006-0010-z
- Gostner, J. M., Geisler, S., Stonig, M., Mair, L., Sperner-Unterweger, B., & Fuchs, D. (2020). Tryptophan metabolism and related pathways in psychoneuroimmunology: The impact of nutrition and lifestyle. Neuropsychobiology, 79, 89–99. https://doi.org/10.1159/000496293
- Hainida, K. I., Amin, I., Normah, H., & Mohd.-Esa, N. (2008). Nutritional and amino acid contents of differently treated Roselle (Hibiscus sabdariffa L.) seeds. Food Chemistry, 111(4), 906–911. https://doi.org/10.1016/j.foodchem.2008.04.070
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
- Latif, S., Pfannstiel, J., Makkar, H. P. S., & Becker, K. (2013). Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process. Food Chemistry, 136(1), 213–217. https://doi.org/10.1016/j.foodchem.2012.07.120
- Lindberg, D., Kristoffersen, K. A., Wubshet, S. G., Hunnes, L. M. G., Dalsnes, M., Dankel, K. R., Høst, V., & Afseth, N. K. (2021). Exploring effects of protease choice and protease combinations in enzymatic protein hydrolysis of poultry by-products. Molecules, 26, 5280. https://doi.org/10.3390/molecules26175280
- Liu, L., Bilal, M., Luo, H., Zhao, Y., & Iqbal, H. M. N. (2019). Metabolic engineering and fermentation process strategies for L-tryptophan production by Escherichia coli. Processes, 7, 213. https://doi.org/10.3390/pr7040213
- Markus, C. R., Firk, C., Gerhardt, C., Kloek, J., & Smolders, G. J. F. (2008). Effect of different tryptophan sources on amino acids availability to the brain and mood in healthy volunteers. Journal of Psychopharmacology, 201, 107–114. https://doi.org/10.1007/s00213-008-1254-0
- Mazloomi, S. N., Sadeghi-Mahoonak, A., Ranjbar-Nedamani, E., & Nourmohammadi, E. (2019). Production of antioxidant peptides through hydrolysis of paper skin pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atherosclerosis, 15, 218–227.
- Mitchell, E. S., Slettenaar, M., Quadt, F., Giesbrecht, T., Kloek, J., Gerhardt, C., Bot, A., Eilander, A., & Wiseman, S. (2011). Effect of hydrolysed egg protein on brain tryptophan availability. British Journal of Nutrition, 105(4), 611–617. https://doi.org/10.1017/S0007114510004150
- Modoux, M., Rolhion, N., Mani, S., & Sokol, H. (2021). Tryptophan metabolism as a pharmacological target. Trends in Pharmacological Sciences, 42, 60–73. https://doi.org/10.1016/j.tips.2020.11.006
- Nayak, B. N., & Buttar, H. S. (2016). Evaluation of the antioxidant properties of tryptophan and its metabolites in vitro assay. Journal of Complementary and Integrative Medicine, 13(2), 1–8. https://doi.org/10.1515/jcim-2015-0051
- Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
- Nongonierma, A. B., Le Maux, S., Dubrulle, C., Barre, C., & FitzGerald, R. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112–118. https://doi.org/10.1016/j.jcs.2015.07.004
- Oyeleke, A., Oluwajuyitan, D., Oluwamukomi, O., & Enujiugha, N. (2019). Amino acid profile, functional properties and in-vitro antioxidant capacity of Cucurbita maxima and Cucurbita mixta fruit pulps and seeds. European Journal of Nutrition and Food Safety, 10(4), 224–241. https://doi.org/10.9734/ejnfs/2019/v10i430117
10.9734/ejnfs/2019/v10i430117 Google Scholar
- Popović, L., Peričin, D., Vaštag, Ž., Popović, S., Krimer, V., & Torbica, A. (2013). Antioxidative and functional properties of pumpkin oil cake globulin hydrolysates. Journal of the American Oil Chemists' Society, 90(8), 1157–1165. https://doi.org/10.1007/s11746-013-2257-5
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- Rezig, L., Chibani, F., Chouaibi, M., Dalgalarrondo, M., Hessini, K., Gueguen, J., & Hamdi, S. (2013). Pumpkin (Cucurbita maxima) seed proteins: Sequential extraction processing and fraction characterization. Journal of Agricultural and Food Chemistry, 61, 7715–7721. https://doi.org/10.1021/jf402323u
- Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N., & Dougherty, D. M. (2009). L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. International Journal of Tryptophan Research, 2, 45–60.
- Shafiee, S., Goli, M., Khoshkhoo, Z., & Hosseini, S. E. (2021). Optimization of hydrolysis conditions (temperature, time, and concentration of alkalase) of rainbow trout viscera using the response surface methodology. Journal of Food Processing and Preservation, 45(5), e15456. https://doi.org/10.1111/jfpp.15456
- Slump, P., Flissebaalje, T. D., & Haaksman, I. K. (1991). Tryptophan in food proteins: A comparison of two hydrolytic procedures. Journal of the Science of Food and Agriculture, 55, 493–496. https://doi.org/10.1002/jsfa.2740550318
- Tardioli, P. W., Pedroche, J., Giordano, R. L., Fernández-Lafuente, R., & Guisán, J. M. (2003). Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose. Biotechnology Progress, 19, 352–360. https://doi.org/10.1021/bp025588n
- Tsopmo, A., Diehl-Jones, B. W., Aluko, R. E., Kitts, D. D., Elisia, I., & Friel, J. K. (2009). Tryptophan released from mother's milk has antioxidant properties. Pediatric Research, 66(6), 614–618. https://doi.org/10.1203/PDR.0b013e3181be9e7e
- Vaštag, Ž., Popović, L., Popović, S., Krimer, V., & Peričin, D. (2011). Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chemistry, 124, 1316–1321. https://doi.org/10.1016/j.foodchem.2010.07.062
- Venuste, M., Zhang, X., Shoemaker, C. F., Karangwa, E., Abbas, S., & Kamdem, P. E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Journal of Functional Foods, 4, 811–820. https://doi.org/10.1039/c3fo30347k
- Vinayashree, S., & Vasu, P. (2021). Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chemistry, 340, 128177. https://doi.org/10.1016/j.foodchem.2020.128177
- Zhang, L., Li, J., & Zhou, K. (2010). Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresource Technology, 101, 2084–2089. https://doi.org/10.1016/j.biortech.2009.11.078
- Zhang, Y., He, S., & Simpson, B. K. (2018). Enzymes in food bioprocessing—Novel food enzymes, applications, and related techniques. Current Opinion in Food Science, 19, 30–35. https://doi.org/10.1016/j.cofs.2017.12.007