Inhibition effect of preservatives or disinfectants on F. concentricum from postharvest asparagus (Asparagus officinalis L.) spear in vitro and in vivo
Yuanyuan Zhang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Investigation, Methodology, Software, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorLixiu Pan
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Conceptualization, Data curation, Investigation, Methodology
Search for more papers by this authorYonggang Fang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Data curation, Investigation, Methodology, Validation
Search for more papers by this authorCorresponding Author
Xiangyang Wang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Correspondence
Xiangyang Wang and Shuang Gu, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
Email: [email protected] (X. W.); [email protected] (S. G.)
Contribution: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Shuang Gu
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Correspondence
Xiangyang Wang and Shuang Gu, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
Email: [email protected] (X. W.); [email protected] (S. G.)
Contribution: Data curation, Investigation, Software, Supervision, Validation, Writing - review & editing
Search for more papers by this authorYuanyuan Zhang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Investigation, Methodology, Software, Validation, Writing - original draft, Writing - review & editing
Search for more papers by this authorLixiu Pan
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Conceptualization, Data curation, Investigation, Methodology
Search for more papers by this authorYonggang Fang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Contribution: Data curation, Investigation, Methodology, Validation
Search for more papers by this authorCorresponding Author
Xiangyang Wang
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Correspondence
Xiangyang Wang and Shuang Gu, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
Email: [email protected] (X. W.); [email protected] (S. G.)
Contribution: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Shuang Gu
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
Correspondence
Xiangyang Wang and Shuang Gu, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
Email: [email protected] (X. W.); [email protected] (S. G.)
Contribution: Data curation, Investigation, Software, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAbstract
In this study, the antifungal effects of 12 preservatives or disinfectants against Fusarium concentricum on asparagus spear, as well as their inhibiting characteristics, were investigated. Results showed that dehydrogenation sodium acetate at 0.5 g/L, sodium ethyl p-hydroxybenzoate at 0.3 g/L, sodium hypochlorite at 0.2 g/L, and cinnamic aldehyde at 0.4 g/L could completely inhibit the sporulation. The concentrations of cinnamaldehyde, sodium hypochlorite, H2O2, and ethyl p-hydroxybenzoate that completely inhibited spore germination were 0.1, 0.1, 0.2, and 0.3 g/L, respectively. High molecule chitosan (HMC) at 0.25 g/L and water-soluble chitosan (WSC) at 2 g/L could inhibit spore germination and 90% of mycelium growth. Moreover, asparagus treated with HMC or WSC at 0.5 g/L showed hyphae growth with no soft rot, which indicated that pectinase might be damaged. This results might provide an important basis for further study into the uses of preservatives for control of postharvest diseases of asparagus.
Novelty impact statement
The screened antifungal agents from food additives showed prominent inhibitory effect on F. concentricum, which were expected to be used for postharvest asparagus preservation in the future.
CONFLICT OF INTEREST
The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abd-Elsalam, K. A., Vasil’kov, A. Y., Said-Galiev, E. E., Rubina, M. S., Khokhlov, A. R., Naumkin, A. V., Shtykova, E. V., & Alghuthaymi, M. A. (2018). Bimetallic blends and chitosan nanocomposites: Novel antifungal agents against cotton seedling damping-off. European Journal of Plant Pathology, 151, 57–72. https://doi.org/10.1007/s10658-017-1349-8
- Ahmad, H., & Matsubara, Y. (2020). Antifungal effect of Lamiaceae herb water extracts against Fusarium root rot in Asparagus. Journal of Plant Diseases and Protection, 127, 229–236. https://doi.org/10.1007/s41348-019-00293-x
- Ali, A., Mohamed, M. T. M., & Siddiqui, Y. (2012). Control of anthracnose by chitosan through stimulation of defence-related enzymes in Eksotika II Papaya (Carica papaya L.) fruit. Journal of Biology and Life Science, 3, 114–126. https://doi.org/10.5296/jbls.v3i1.1306
10.5296/jbls.v3i1.1306 Google Scholar
- Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolliod, 29, 48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013
- Chandra, S. S., Miglani, R., Srinivasan, M. R., & Indira, R. (2010). Antifungal efficacy of 5.25 % sodium hypochlorite, 2 % chlorhexidine gluconate, and 17 % EDTA with and without an antifungal agent. Journal of Endodontics, 36, 675–678. https://doi.org/10.1016/j.joen.2010.01.015
- Chen, H. W., Chiou, C. S., & Chang, S. H. (2017). Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group. Powder Technology, 311, 426–431. https://doi.org/10.1016/j.powtec.2017.01.060
- Chitrakar, B., Zhang, M., & Adhikari, B. (2019). Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem byproducts. Trends in Food Science & Technology, 93, 1–11. https://doi.org/10.1016/j.tifs.2019.08.020
- Cho, J. S., Seo, Y. C., Yim, T. B., & Lee, H. Y. (2013). Effect of nanoencapsulated vitamin B1 derivative on inhibition of both mycelial growth and spore germination of Fusarium oxysporum sp. Raphanin. International Journal of Molecular Sciences, 14, 4283–4297. https://doi.org/10.3390/ijms14024283
- Elmer, W. H. (2015). Management of Fusarium crown and root rot of asparagus. Crop Protection, 73, 2–6. https://doi.org/10.1016/j.cropro.2014.12.005
- Farahani-Kofoet, R. D., Witzel, K., Graefe, J., Grosch, R., & Zrenner, R. (2020). Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens, 9(6), 509–528. https://doi.org/10.3390/pathogens9060509
- Ferrochio, L., Cendoya, E., Farnochi, M. C., Massad, W., & Ramirez, M. L. (2013). Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 167, 215–220. https://doi.org/10.1016/j.ijfoodmicro.2013.09.005
- GB 2760-2014. (2014). National food safety standards: Standard for the use of food additives. China: National Health and Family Planning Commission.
- Guo, Q. B., Wang, N. F., Liu, H. H., Li, Z. J., Lu, L. F., & Wang, C. L. (2020). The bioactive compounds and biological functions of Asparagus officinalis L.—A review. Journal of Functional Foods, 65, e103727. https://doi.org/10.1016/j.jff.2019.103727
- Hou, Y. P., Mao, X. W., Wang, J. X., Zhan, S. W., & Zhou, M. G. (2017). Sensitivity of Fusarium asiaticum to a novel succinate dehydrogenase inhibitor fungicide pydiflumetofen. Crop Protection, 96, 237–244. https://doi.org/10.1016/j.cropro.2017.02.011
- Hu, L. G., Li, Y. C., Bi, Y., Li, J. P., Bao, G. H., Liu, J. J., & Yu, X. Y. (2014). Effects of nitric oxide on growth of Fusarium sulphureum and its virulence to potato tubers. European Food Research and Technology, 238, 1007–1014. https://doi.org/10.1007/s00217-014-2180-5
- Ji, Y., Ji, C., Yue, L., & Xu, H. (2012). Saponins isolated from asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway. Current Oncology, 19(Suppl 2), S1–S9. https://doi.org/10.3747/co.19.1139
- Jia, R. X., Jiang, H. J., Jin, M. Y., Wang, X. Y., & Huang, J. Y. (2015). Silver/chitosan-based Janus particles: Synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro. Food Research International, 78, 433–441. https://doi.org/10.1016/j.foodres.2015.08.035
- Kulshreshtha, A. K., Singh, O. N., & Wall, G. M. (2009). Pharmaceutical suspensions: From formulation development to manufacturing (pp. 103–126). AAPS Press.
- Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., & Shen, Q. (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One, 8, e63383. https://doi.org/10.1371/journal.pone.0063383
- Liu, L. Y. (2017). Study on the laxative function of asparagus oligosaccharides. Food Research Development, 38, 165–167. https://doi.org/10.3969/j.issn.1005-6521.2017.04.037
- Macnish, A. J., Macnish, K. L., Theije, A., Mensink, M. G. J., Boerrigter, H. A. M., Reid, M. S., Jiang, C. Z., & Woltering, E. J. (2010). Sodium hypochlorite: A promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biology Technology, 58, 262–267. https://doi.org/10.1016/j.postharvbio.2010.07.014
- Mahovic, M. J., Tenney, J. D., & Bartz, J. A. (2007). Applications of chlorine dioxide gas for control of bacterial soft rot in tomatoes. Plant Disease, 91, 1316–1320. https://doi.org/10.1094/PDIS-91-10-1316
- Maqbool, M., Ali, A., & Alderson, P. G. (2010). A combination of gum arabic and chitosan can control anthracnose caused by Colletotrichum musae and enhance the shelf-life of banana fruit. Journal of Horticultural Science & Biotechnology, 85, 432–436. https://doi.org/10.1080/14620316.2010.11512693
- Marquez, I. G., Akuaku, J., Cruz, I., Cheetham, J., Golshani, A., & Smith, M. L. (2013). Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Microbiology, 164, 108–112. https://doi.org/10.1016/j.ijfoodmicro.2013.03.025
- Mauch, A., Dal, B. F., Coffey, A., & Arendt, E. K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141, 116–121. https://doi.org/10.1016/j.ijfoodmicro.2010.05.002
- Meng, D., Garba, B., Ren, Y., Yao, M., Xia, X. S., Li, M. Y., & Wang, Y. (2020). Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. International Journal of Biological Macromolecules, 158, 1063–1070. https://doi.org/10.1016/j.ijbiomac.2020.04.213
- Mills, A. A. S., Platt, H. W., & Hurta, R. A. R. (2004). Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biology Technology, 34, 341–350. https://doi.org/10.1016/j.postharvbio.2004.05.022
- Naeini, A., Ziglari, T., Shokri, H., & Khosravi, A. R. (2010). Assessment of growth-inhibiting effect of some plant essential oils on different Fusarium isolates Évaluation de l’activité antifongique de quelqueshuiles essentielles de plantes sur divers isolats de Fusarium. Journal De Mycologie Médicale, 20, 174–178. https://doi.org/10.1016/j.mycmed.2010.05.005
- Olicn-Hernndez, D. R., Hernndez-Lauzardo, A. N., Pardo, J. P., Pea, A., Velazquez-del Valle, M. G., & Guerra-Sanchez, G. (2015). Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. International Journal of Biological Macromolecules, 79, 654–660. https://doi.org/10.1016/j.ijbiomac.2015.05.057
- Qiu, M., Wu, C., Ren, G. R., Liang, X. L., Wang, X. Y., & Huang, J. Y. (2014). Effect of chitosan and its derivatives as antifungal and preservative, agents on postharvest green asparagus. Food Chemistry, 155, 105–111. https://doi.org/10.1016/j.foodchem.2014.01.026
- Rachitha, P., Krupashree, K., Jayashree, G. V., Gopalan, N., & Khanum, F. (2017). Growth inhibition and morphological alteration of Fusarium sporotrichioides by Menthapiperita essential oil. Pharmacognosy Research, 9, 74–79. https://doi.org/10.4103/0974-8490.199771
- Rodrigues, M. J., Monteiro, I., Castañeda-Loaiza, V., Placines, C., Oliveira, M. C., Reis, C., Caperta, A. D., Soares, F., Pousão-Ferreira, P., Pereira, C., & Custódio, L. (2020). Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity. Industrial Crops and Products, 143, e111930. https://doi.org/10.1016/j.indcrop.2019.111930
- Rosado-Álvarez, C., Molinero-Ruiz, L., Rodríguez-Arcos, R., & Basallote-Ureba, M. J. (2014). Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Scientia Horticultura, 171, 51–57. https://doi.org/10.1016/j.scienta.2014.03.037
- Shen, L. Q., & Huang, G. R. (2004). Study on modified atmosphere packaging of asparagus (Asparagus officinalis L.). Acta Agriculturae Zhejiangensis, 16, 42–46. https://doi.org/10.1300/J064v24n01-09
- Sun, L. P., Du, Y. M., Fan, L. H., Chen, X., & Yang, J. H. (2006). Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer, 47, 1796–1804. https://doi.org/10.1016/j.polymer.2006.01.073
- Tang, X., Ouyang, Q. L., Jing, G. X., Shao, F. X., & Tao, N. G. (2018). Antifungal mechanism of sodium dehydroacetate against Geotrichum citri-aurantii. World Journal of Microbiology & Biotechnology, 34, 29–35. https://doi.org/10.1007/s11274-018-2413-z
- Wade, H. E. (2015). Management of fusarium crown and root rot of asparagus. Crop Protection, 73, 2–6. https://doi.org/10.1016/j.cropro.2014.12.005
- Wang, X. Y., Chen, B. L., Pan, L. X., Huang, J. Y., & Gu, S. (2016). Inhibition effect of preservatives and disinfectants on Erwinia carotovora from postharvest asparagus spear. Journal of Chinese Institute of Food Science and Technology, 12, 172–177. (In Chinese). https://doi.org/10.16429/j.1009-7848.2016.08.024
- Wang, X. Y., Gu, S., Chen, B. L., Huang, J. Y., & Xing, J. R. (2017). Effect of postharvest L-arginine or cholesterol treatment on the quality of green asparagus (Asparagus officinalis L.) spears during low temperature storage. Scientia Horticulturae, 225, 788–794. https://doi.org/10.1016/j.scienta.2017.07.058
- Wang, Y. W., Ma, T. F., Wu, W. Y., & Xu, L. (2008). Isolation and identification of postharvest pathogenic fungi from asparagus in Shanghai. In P. Youliang & W. Zhenzhong (Ed.), Proceedings of the annual meeting of Chinese society for plant pathology (p. 216). Chinese Society of Plant Pathology.
- Xing, F., Hua, H., Selvaraj, J. N., Zhao, Y., Zhou, L. U., Liu, X., & Liu, Y. (2014). Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control, 46, 343–350. https://doi.org/10.1016/j.foodcont.2014.04.037
- Xing, K., Li, T. J., Liu, Y. F., Zhang, J., Zhang, Y., Shen, X. Q., Li, X. Y., Miao, X. M., Feng, Z. Z., Peng, X., Li, Z. Y., & Qin, S. (2018). Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chemstry, 268, 188–195. https://doi.org/10.1016/j.foodchem.2018.06.088
- Xing, K., Liu, Y., Shen, X., Zhu, X., Li, X., Miao, X., Feng, Z., Peng, X., & Qin, S. (2017). Effect of o-chitosan nanoparticles on the development and membrane permeability of Verticillium dahliae. Carbohydrate Polymers, 165, 334–343. https://doi.org/10.1016/j.carbpol.2017.02.063
- Yang, R., Jiang, Y., Xiu, L. L., & Huang, J. Y. (2019). Effect of chitosan pre-soaking on the growth and quality of yellow soybean sprouts. Journal of the Science of Food and Agriculture, 99, 1596–1603. https://doi.org/10.1155/2019/6264270
- Yang, Y. J., Lin, W., Singh, R. P., Xu, Q., Chen, Z. H., Yuan, Y., Zou, P., Li, Y. Q., & Zhang, C. S. (2019). Genomic, transcriptomic and enzymatic insight into lignocellulolytic system of a plant pathogen Dickeya sp. WS52 to digest sweet pepper and tomato stalk. Biomolecules, 9, 753–770. https://doi.org/10.3390/biom9120753
- Zahid, N., Maqbool, M., Ali, A., Siddiqui, Y., & Bhatti, Q. A. (2019). Inhibition in production of cellulolytic and pectinolytic enzymes of Colletotrichum gloeosporioides isolated from dragon fruit plants in response to submicron chitosan dispersions. Scientia Horticulturae, 243, 314–319. https://doi.org/10.1016/j.scienta.2018.08.011
- Zhang, D., Yu, S. Q., Zhao, D. M., Zhang, J. L., Pan, Y., Yang, Y. Q., Yang, Z. H., Zhu, J. H., Zhao, Y., & Li, R. (2021). Inhibitory effects of non-volatiles lipopeptides and volatiles ketones metabolites secreted by Bacillus velezensis C16 against Alternaria solani. Biology Control, 152, e104421. https://doi.org/10.1016/j.biocontrol.2020.104421
- Zhang, Y. M., Liu, H. L., Yu, Z. R., Wang, K., Wang, Y. J., & Yin, J. (2016). Sodium dehydroacetate levels in chicken tissues. Journal of Food Composition and Analysis, 47, 31–37. https://doi.org/10.1016/j.jfca.2015.12.008
- Zhang, Y. G., Zhang, X. H., & Xie, X. L. (2007). Effect of addition of sodium dehydroacetate on the fermentation of blue-grass silage. Journal of Animal and Feed Sciences, 16, 19–24. https://doi.org/10.22358/jafs/74412/2007
- Zheng, J. L., Zhang, S. Q., Gao, J. M., Chen, H. L., Liu, Q. L., & Yi, K. X. (2011). Identification of the pathogen of fusarium wilt of asparagus. Chinese Journal of Tropical Agriculture, 30, 33–36. (In Chinese).