A novel preparation for siderophore-assisted copper and zinc enrichment in yeast
Xiao-ying Fan
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorZi-yu Liu
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorZhi-peng Jia
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorYa-ru Wei
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorDong-dong Xie
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorJi Zhang
College of Life Sciences, Northwest Normal University, Lanzhou, China
Search for more papers by this authorBei Wang
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorCorresponding Author
Xin-guo Zhang
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Correspondence
Xin-guo Zhang, School of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Qilihe District, Lanzhou 730050, Gansu Province, China.
Email: [email protected]
Bei Wang, School of Life Science and Engineering, Lanzhou University of Technology, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu Province, China.
Email: [email protected]
Ji Zhang, College of Life Science, Northwest Normal University, No. 967, Anning East Road, Anning District, Lanzhou 730070, Gansu Province, China.
Email: [email protected]
Search for more papers by this authorXiao-ying Fan
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorZi-yu Liu
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorZhi-peng Jia
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorYa-ru Wei
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorDong-dong Xie
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorJi Zhang
College of Life Sciences, Northwest Normal University, Lanzhou, China
Search for more papers by this authorBei Wang
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Search for more papers by this authorCorresponding Author
Xin-guo Zhang
School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou, China
Correspondence
Xin-guo Zhang, School of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Qilihe District, Lanzhou 730050, Gansu Province, China.
Email: [email protected]
Bei Wang, School of Life Science and Engineering, Lanzhou University of Technology, No. 287, Langongping Road, Qilihe District, Lanzhou 730050, Gansu Province, China.
Email: [email protected]
Ji Zhang, College of Life Science, Northwest Normal University, No. 967, Anning East Road, Anning District, Lanzhou 730070, Gansu Province, China.
Email: [email protected]
Search for more papers by this authorXiao-ying Fan and Zi-yu Liu contributed equally to this work.
Abstract
Copper and zinc are essential trace elements for several biological activities and play an important role in living organisms. In this study, the role of siderophores obtained from 16 microorganisms isolated from an iron-rich environment was evaluated in the transport of zinc and copper in yeast. In addition, siderophores showing relevant transport activity were used in the preparation of metal-enriched yeast. Siderophores TZT-SH5I and TZT-ZTH2X significantly improved tolerance of Saccharomyces cerevisiae during growth under high concentrations of zinc/copper. Strains producing siderophores TZT-SH5I and TZT-ZTH2X were identified as Aspergillus sp and Penicillium sp, respectively. The orthogonal method was used to determine optimized conditions for siderophore-assisted copper and zinc enrichment of S. cerevisiae. The final intracellular content of organic Cu and Zn in S. cerevisiae grown in a siderophore-containing medium was 60.76 and 44.22 mg/g. This study provides a convenient and feasible new strategy for the preparation of supplements rich in organic trace elements.
Novelty impact statement
Bioaccumulation of essential trace elements (TEs) by microorganisms is one of the most important ways to TEs from inorganic into organic forms which can be more efficiently absorbed by humans. In the current study, a novel method for preparing copper and zinc-enriched yeast using siderophores from high iron environment microorganisms has been optimized and established. Significantly higher intracellular content of organic Cu and Zn in Saccharomyces cerevisiae grown in a siderophore-containing medium was obtained, which would provide a new idea and platform for the preparation of organic trace elements.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data available in article Supporting Information.
Supporting Information
Filename | Description |
---|---|
jfpp16131-sup-0001-FigS1.tifTIFF image, 23.4 MB | Fig S1 |
jfpp16131-sup-0002-TableS1.docxWord 2007 document , 19.6 KB | Table S1 |
jfpp16131-sup-0003-caption.docxWord 2007 document , 11.6 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allen, K. G., & Klevay, L. M. (1978). Cholesterolemia and cardiovascular abnormalities in rats caused by copper deficiency. Atherosclerosis, 29(1), 81–93. https://doi.org/10.1016/0021-9150(78)90096-5
- Aminisani, N., Ehdaivand, F., Shamshirgaran, S. M., Mohajery, M., Pourfarzi, F., & Sadeghiyeh Ahari, M. D. (2009). Zinc supplementation during pregnancy: A randomized controlled trial. Iranian Journal of Pharmacology & Therapeutics, 8(2), 67–71. http://dspace.tbzmed.ac.ir:8080/xmlui/handle/123456789/58750
- Arnold, L. E., & Disilvestro, R. A. (2005). Zinc in attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 15(4), 619–627. https://doi.org/10.1089/cap.2005.15.619
- Batic, M., & Raspor, P. (2000). Effect of cultivation mode on a bioprocess for chromium yeast biomass enrichment. Pflügers Archiv - European Journal of Physiology, 439, R073–R075. https://doi.org/10.1007/s004240000096
- Becerril-Espinosa, A., Freel, K. C., Jensen, P. R., & Soria-Mercado, I. E. (2013). Marine Actinobacteria from the Gulf of California: Diversity, abundance and secondary metabolite biosynthetic potential. Antonie van Leeuwenhoek, 103(4), 809–819. https://doi.org/10.1007/s10482-012-9863-3
- Bird, A. J., & Wilson, S. (2020). Zinc homeostasis in the secretory pathway in yeast. Current Opinion in Chemical Biology, 55, 145–150. https://doi.org/10.1016/j.cbpa.2020.01.011
- Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107–115. https://doi.org/10.1016/j.jtemb.2016.02.006
- Butt, T. R., Sternberg, E. J., Gorman, J. A., Clark, P., Hamer, D., Rosenberg, M., & Crooke, S. T. (1984). Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proceedings of the National Academy of Sciences, 81(11), 3332–3336. https://doi.org/10.1073/pnas.81.11.3332
- Dupont, J., Dequin, S., Giraud, T., Le Tacon, F., Marsit, S., Ropars, J., Richard, F., & Selosse, M.-A. (2017). Fungi as a source of food. Microbiology Spectrum, 5(3). https://doi.org/10.1128/microbiolspec.FUNK-0030-2016
- Egressy-Molnár, O., Ouerdane, L., Győrfi, J., & Dernovics, M. (2016). Analogy in selenium enrichment and selenium speciation between selenized yeast Saccharomyces cerevisiae and Hericium erinaceus (lion's mane mushroom). LWT - Food Science and Technology, 68, 306–312. https://doi.org/10.1016/j.lwt.2015.12.028
- Emri, T., Tóth, V., Nagy, C. T., Nagy, G., Pócsi, I., Gyémánt, G., Antal, K., Balla, J., Balla, G., Román, G., Kovács, I., & Pócsi, I. (2013). Towards high-siderophore-content foods: Optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. Journal of the Science of Food and Agriculture, 93(9), 2221–2228. https://doi.org/10.1002/jsfa.6029
- Fan, X. Y., Guo, X. N., Fu, X. H., He, X. P., & Zhang, B. R. (2003). The breeding and culture condition optimization of a high-biomass, selenium-enriched yeast strain. Sheng Wu Gong Cheng Xue Bao, 19(6), 720–724. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZSP200502012.htm
- Fernanda, G., Castro, W. G. M. F. D., Debora, B., & Bordin, B. T. M. (2011). Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties. Food Science and Technology, 31(4), 980–983. https://doi.org/10.1590/s0101-20612011000400025
10.1590/s0101?20612011000400025 Google Scholar
- Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4–5), 235–244. https://doi.org/10.1016/j.mam.2005.07.013
- Gharekhani, A., Azari Takami, G., Tukmechi, A., Afsharnasab, M., & Agh, N. (2015). Effect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on immunity of rainbow trout (Oncorhynchus mykiss). Iranian Journal of Veterinary Research, 16(3), 278–282. https://pubmed.ncbi.nlm.nih.gov/27175189
- Goldenberg, R. L., Tamura, T., Neggers, Y., Copper, R. L., Johnston, K. E., DuBard, M. B., & Hauth, J. C. (1995). The effect of zinc supplementation on pregnancy outcome. JAMA, 274(6), 463–468. https://doi.org/10.1001/jama.1995.03530060037030
- Gupte, A., & Mumper, R. J. (2009). Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Reviews, 35(1), 32–46. https://doi.org/10.1016/j.ctrv.2008.07.004
- Hall, T. A., & Brown, J. W. (2001). The ribonuclease P family. Methods in Enzymology, 341, 56–77. https://doi.org/10.1016/s0076-6879(01)41145-1
- Hambidge, M. (2000). Human zinc deficiency. Journal of Nutrition, 130(5S suppl), 1344s–1349s. https://doi.org/10.1093/jn/130.5.1344S
- Harris, E. D. (2003). Basic and clinical aspects of copper. Critical Reviews in Clinical Laboratory Sciences, 40(5), 547–586. https://doi.org/10.1080/10408360390250649
- Jin, Y. C., & Xu, J. (1993). Copper sulfate and vitamin B_complexation of 6. Journal of Jiangxi University of Traditional Chinese Medicine, 2, 65–68.
- Klevay, L. M. (1987). Dietary copper: A powerful determinant of cholesterolemia. Medical Hypotheses, 24(2), 111–119. https://doi.org/10.1016/0306-9877(87)90093-4
- Korhola, M., & Edelmann, K. (1986). Yeast preparations enriched with trace elements. Acta Pharmacologica Et Toxicologica, 59(suppl 7), 148–151. https://doi.org/10.1111/j.1600-0773.1986.tb02729.x
- Kuang, L., Zeng, L. H., Ma, P. M., Li, W., Huang, C. B., Zhang, C., Chen, G. Y., & Sichuan, A. F. (2013). Studies on breeding of selenium-enriched yeasts. Journal of Food and Biotechnology, 32(10), 1085–1090. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WXQG201310016.htm
- Kwok, E., & Kosman, D. (2005). Iron in yeast: Mechanisms involved in homeostasis. In In Topics in Current Genetics (Vol. 14, pp. 59–99). Molecular Biology of Metal Homeostasis and Detoxification. Berlin, Germany: Springer.
10.1007/4735_92 Google Scholar
- Labbé, S., Pelletier, B., & Mercier, A. (2007). Iron homeostasis in the fission yeast Schizosaccharomyces pombe. BioMetals, 20(3-4), 523–537. https://doi.org/10.1007/s10534-006-9056-5
- Larsen, A. G., & Knechel, S. (1997). Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. Journal of Applied Microbiology, 83(1), 111–119. https://doi.org/10.1046/j.1365-2672.1997.00196.x
- Lin, Y., Kikuchi, S., Obata, Y., & Yagyu, K. (2002). Serum copper/zinc superoxide dismutase (Cu/Zn SOD) and gastric cancer risk: A case-control study. Japanese Journal of Cancer Research, 93(10), 1071–1075. https://doi.org/10.1111/j.1349-7006.2002.tb01207.x
- Lottermoser, B. G. (2009). Trace metal enrichment in sugarcane soils due to the long-term application of fertilisers, North Queensland, Australia: Geochemical and Pb, Sr, and U isotopic compositions. Soil Research, 47(3), 11–20. https://doi.org/10.1071/sr06178
- Lu, H. Z., Jia, J. H., Wang, Q. M., & Bai, F. Y. (2004). Candida asparagi sp. nov., Candida diospyri sp. nov. and Candida qinlingensis sp. nov., novel anamorphic, ascomycetous yeast species. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 4), 1409–1414. https://doi.org/10.1099/ijs.0.03055-0
- Milagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiol Methods, 37(1), 1–6. https://doi.org/10.1016/s0167-7012(99)00028-7
- Ministry of Health, P (GB/T 5009.13-2017). (2017). Determination of copper in food. China Standards Press.
- Ministry of Health, P (GB/T 5009.14-2017). (2017). Determination of zinc in food. China Standards Press.
- Pócsi, I., Jeney, V., Kertai, P., Pócsi, I., Emri, T., Gyémánt, G., Fésüs, L., Balla, J., & Balla, G. (2008). Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Molecular Nutrition & Food Research, 52(12), 1434–1447. https://doi.org/10.1002/mnfr.200700467
- Pratt, W. B., Omdahl, J. L., & Sorenson, J. R. (1985). Lack of effects of copper gluconate supplementation. American Journal of Clinical Nutrition, 42(4), 681–682. https://doi.org/10.1093/ajcn/42.4.681
- Rajkumar, M., Ae, N., Prasad, M. N., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28(3), 142–149. https://doi.org/10.1016/j.tibtech.2009.12.002
- Rosado, J. L. (2003). Zinc and copper: Proposed fortification levels and recommended zinc compounds. Journal of Nutrition, 133(9), 2985s–2989s. https://doi.org/10.1093/jn/133.9.2985S
- Salgueiro, M. J., Zubillaga, M. B., Lysionek, A. E., Sarabia, M. I., Caro, R. A., De Paoli, T., & Boccio, J. R. (2000). Bioavailability, biodistribution, and toxicity of BioZn-AAS(1): A new zinc source. Comparative studies in rats. Nutrition, 16(9), 762–766. https://doi.org/10.1016/s0899-9007(00)00379-8
- Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
- Sheikh-Ali, S. I., Ahmad, A., Mohd-Setapar, S. H., Zakaria, Z. A., Abdul-Talib, N., Khamis, A. K., & Hoque, M. E. (2014). The potential hazards of Aspergillus sp. in foods and feeds, and the role of biological treatment: A review. Journal of Microbiology, 52(10), 807–818. https://doi.org/10.1007/s12275-014-4294-7
- Sillerová, S., Lavová, B., Urminská, D., Poláková, A., Vollmannová, A., & Harangozo, L. (2012). Copper enriched yeast Saccharomyces cerevisiae as a potential supplement in nutrition. Journal of Microbiology, Biotechnology and Food Sciences, 1, 696–702.
- Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092
- Tiefenbach, J. (1986). Zinc–An essential trace element, its distribution in the human body, its biologic function and metabolism. Vnitrni Lekarstvi, 32(7), 707–714. https://pubmed.ncbi.nlm.nih.gov/3739261
- Tompkins, T. A., Renard, N. E., & Kiuchi, A. (2007). Clinical evaluation of the bioavailability of zinc-enriched yeast and zinc gluconate in healthy volunteers. Biological Trace Element Research, 120(1-3), 28–35. https://doi.org/10.1007/s12011-007-0072-2
- Trocello, J. M., Chappuis, P., El Balkhi, S., Poupon, J., Leyendecker, A., Chaine, P., & Woimant, F. (2010). Abnormal copper metabolism in adult. Revue de Medecine Interne, 31(11), 750–756. https://doi.org/10.1016/j.revmed.2009.11.012
- Vetchý, M. (2018). Biological role of copper as an essential trace element in the human organism. Ceska A Slovenska Farmacie, 67(4), 143–153. https://pubmed.ncbi.nlm.nih.gov/30646728
- Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. BioMetals, 27(4), 623–631. https://doi.org/10.1007/s10534-014-9739-2
- Wang, Z., Zhang, J., Su, T., Guan, Z., & Ji, M. (2011). Screening of iron- and zinc-enriched yeast strain and optimization of cultivation conditions. Preparative Biochemistry & Biotechnology, 41(3), 278–286. https://doi.org/10.1080/10826068.2010.539656
- Yuan, Y., Guo, X., He, X., Zhang, B., & Liu, S. (2004). Construction of a high-biomass, iron-enriched yeast strain and study on distribution of iron in the cells of Saccharomyces cerevisiae. Biotechnology Letters, 26(4), 311–315. https://doi.org/10.1023/b:bile.0000015449.30186.90
- Zemrani, B., & Bines, J. E. (2020). Recent insights into trace element deficiencies: Causes, recognition and correction. Current Opinion in Gastroenterology, 36(2), 110–117. https://doi.org/10.1097/mog.0000000000000612
- Zhang, S. Q., Zhang, H. B., Cheng, Q., Zhu, Y. M., Xia, C. H., Zhu, Y. H., & Zhang, Y. (2019). Zinc-enriched yeast improves learning and memory impairments in zinc-deficient rats. Biological Trace Element Research, 189(1), 180–185. https://doi.org/10.1007/s12011-018-1466-z
- Zhang, S., Zhang, Y., Peng, N., Zhang, H., Yao, J., Li, Z., & Liu, L. (2014). Pharmacokinetics and biodistribution of zinc-enriched yeast in rats. The Scientific World Journal, 2014, 1–4. https://doi.org/10.1155/2014/217142
- Zhang, X. G., Peng, Y. N., Li, X. R., Ma, G. D., & Wang, M. G. (2014). Higher bioavailability of organic bound zinc from high zinc-enriched fungi. International Journal for Vitamin and Nutrition Research, 84(5–6), 277–285. https://doi.org/10.1024/0300-9831/a000214
- Zhang, X. G., Wei, G. X., Wang, W. N., Ma, G. D., Tang, P., & Chen, X. Q. (2016). Effects of Fe-YM1504 on iron deficiency anemia in rats. Food & Function, 7(7), 3184–3192. https://doi.org/10.1039/c6fo00423g