Evaluating restriction enzyme selection for reduced representation sequencing in conservation genomics
Ainhoa López
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorCarlos Carreras
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorMarta Pascual
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorCorresponding Author
Cinta Pegueroles
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Correspondence
Cinta Pegueroles, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 645, Barcelona 08028, Spain.
Email: [email protected]
Search for more papers by this authorAinhoa López
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorCarlos Carreras
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorMarta Pascual
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Search for more papers by this authorCorresponding Author
Cinta Pegueroles
Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Correspondence
Cinta Pegueroles, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 645, Barcelona 08028, Spain.
Email: [email protected]
Search for more papers by this authorCarlos Carreras, Marta Pascual, and Cinta Pegueroles jointly supervised this work.
Abstract
Conservation genomic studies in non-model organisms generally rely on reduced representation sequencing techniques based on restriction enzymes to identify population structure as well as candidate loci for local adaptation. While the expectation is that the reduced representation of the genome is randomly distributed, the proportion of the genome sampled might depend on the GC content of the recognition site of the restriction enzyme used. Here, we evaluated the distribution and functional composition of loci obtained after a reduced representation approach using Genotyping-by-Sequencing (GBS). To do so, we compared experimental data from two endemic fish species (Symphodus ocellatus and Symphodus tinca, EcoT22I enzyme) and two ecosystem engineer sea urchins (Paracentrotus lividus and Arbacia lixula, ApeKI enzyme). In brief, we mapped the sequenced loci to the phylogenetically closest reference genome available (Labrus bergylta in the fish and Strongylocentrotus purpuratus in the sea urchin datasets), classified them as exonic, intronic and intergenic, and studied their function by using Gene Ontology (GO) terms. We also simulated the effect of using both enzymes in the two reference genomes. In both simulated and experimental data, we detected an enrichment towards exonic or intergenic regions depending on the restriction enzyme used and failed to detect differences between total loci and candidate loci for adaptation in the empirical dataset. Most of the functions assigned to the mapped loci were shared between the four species and involved a myriad of general functions. Our results highlight the importance of restriction enzyme selection and the need for high-quality annotated genomes in conservation genomic studies.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Genetic data were obtained from public repositories (A. lixula: PRJNA746276, P. lividus: PRJNA608661, Symphodus ocellatus: PRJNA646056 and Symphodus tinca: PRJNA646057). All the bioinformatic pipelines used in this research are available on GitHub (https://github.com/EvolutionaryGenetics-UB-CEAB/restrictionEnzimes.git).
Supporting Information
Filename | Description |
---|---|
men13865-sup-0001-Supinfo.docxWord 2007 document , 120.2 KB |
Figure S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Agnetta, D., Badalamenti, F., Ceccherelli, G., Di Trapani, F., Bonaviri, C., & Gianguzza, P. (2015). Role of two co-occurring Mediterranean sea urchins in the formation of barren from Cystoseira canopy. Estuarine, Coastal and Shelf Science, 152, 73–77.
- Agnetta, D., Bonaviri, C., Badalamenti, F., Scianna, C., Vizzini, S., & Gianguzza, P. (2013). Functional traits of two co-occurring sea urchins across a barren/forest patch system. Journal of Sea Research, 76, 170–177.
- Amit, M., Donyo, M., Hollander, D., Goren, A., Kim, E., Gelfman, S., Lev-Mao, G., Burstein, D., Schwartz, S., Postolsky, B., Pupko, T., & Ast, G. (2012). Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Reports, 1, 543–556.
- Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews. Genetics, 17, 81–92.
- Benestan, L. M., Ferchaud, A.-L., Hohenlohe, P. A., Garner, B. A., Naylor, G. J. P., Baums, I. B., Schwartz, M. K., Kelley, J. L., & Luikart, G. (2016). Conservation genomics of natural and managed populations: Building a conceptual and practical framework. Molecular Ecology, 25, 2967–2977.
- Bonaviri, C., Vega Fernández, T., Fanelli, G., Badalamenti, F., & Gianguzza, P. (2011). Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Marine Biology, 158, 2505–2513.
- Bradbury, I. R., Hamilton, L. C., Dempson, B., Robertson, M. J., Bourret, V., Bernatchez, L., & Verspoor, E. (2015). Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Molecular Ecology, 24, 5130–5144.
- Brandies, P., Peel, E., Hogg, C. J., & Belov, K. (2019). The value of reference genomes in the conservation of threatened species. Genes, 10, 846.
- Bulleri, F. (2013). Grazing by sea urchins at the margins of barren patches on Mediterranean rocky reefs. Marine Biology, 160, 2493–2501.
- Bulleri, F., Benedetti-Cecchi, L., & Cinelli, F. (1999). Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. Journal of Experimental Marine Biology and Ecology, 241, 81–95.
- Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22, 3124–3140.
- Carreras, C., García-Cisneros, A., Wangensteen, O. S., Ordóñez, V., Palacín, C., Pascual, M., & Turon, X. (2020). East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Diversity & Distributions, 26, 382–398.
- Carreras, C., Ordóñez, V., García-Cisneros, À., Wangensteen, O. S., Palacín, C., Pascual, M., & Turon, X. (2021). The two sides of the Mediterranean: Population genomics of the black sea urchin Arbacia lixula (Linnaeus, 1758) in a warming sea. Frontiers in Marine Science, 8, 739008.
- Carreras, C., Ordóñez, V., Zane, L., Kruschel, C., Nasto, I., Macpherson, E., & Pascual, M. (2017). Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Scientific Reports, 7, 43417.
- Carreras-Carbonell, J., Macpherson, E., & Pascual, M. (2008). Utility of pairwise mtDNA genetic distances for predicting cross-species microsatellite amplification and polymorphism success in fishes. Conservation Genetics, 9, 181–190.
- Casso, M., Turon, X., & Pascual, M. (2019). Single zooids, multiple loci: Independent colonisations revealed by population genomics of a global invader. Biological Invasions, 21, 3575–3592.
- Chaffey, N. (2003). Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. Annals of Botany, 91, 401.
10.1093/aob/mcg023 Google Scholar
- DaCosta, J. M., & Sorenson, M. D. (2014). Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLoS One, 9, e106713.
- Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008.
- Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.
- Formenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J. A., Höglund, J., Malukiewicz, J., Mouton, A., Oomen, R. A., Paez, S., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Svardal, H., Theofanooulou, C., … European Reference Genome Atlas (ERGA) Consortium. (2022). The era of reference genomes in conservation genomics. Trends in Ecology & Evolution, 37, 197–202.
- Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27, 489–496.
- Galià-Camps, C., Carreras, C., Turon, X., & Pascual, M. (2022). The impact of adaptor selection on genotyping in 2b-RAD studies. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1079839
- Galià-Camps, C., Pegueroles, C., Turon, X., Carreras, C., & Pascual, M. (2023). Genome architecture impacts on reduced representation population genomics. Authorea. https://doi.org/10.22541/au.168757928.87160541/v1
10.22541/au.168757928.87160541/v1 Google Scholar
- Galla, S. J., Forsdick, N. J., Brown, L., Hoeppner, M. P., Knapp, M., Maloney, R. F., Moraga, R., Santure, A. W., & Steeves, T. E. (2018). Reference genomes from distantly related species can be used for discovery of single nucleotide polymorphisms to inform conservation management. Genes, 10, 9.
- Guidetti, P., & Dulcić, J. (2007). Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Marine Environmental Research, 63, 168–184.
- Hapke, A., & Thiele, D. (2016). GIbPSs: A toolkit for fast and accurate analyses of genotyping-by-sequencing data without a reference genome. Molecular Ecology Resources, 16, 979–990.
- Herrera, S., Reyes-Herrera, P. H., & Shank, T. M. (2015). Predicting RAD-seq marker numbers across the eukaryotic tree of life. Genome Biology and Evolution, 7, 3207–3225.
- Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019). eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47, 309–314.
- IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://doi.org/10.5281/zenodo.6417333
10.5281/zenodo.6417333 Google Scholar
- Kalari, K. R., Casavant, M., Bair, T. B., Keen, H. L., Comeron, J. M., Casavant, T. L., & Scheetz, T. E. (2006). First exons and introns—A survey of GC content and gene structure in the human genome. In Silico Biology, 6, 237–242.
- Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907–915.
- Kirschner, S. A., Hunewald, O., Mériaux, S. B., Brunnhoefer, R., Muller, C. P., & Turner, J. D. (2016). Focussing reduced representation CpG sequencing through judicious restriction enzyme choice. Genomics, 107, 109–119.
- Lepais, O., & Weir, J. T. (2014). SimRAD: An R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Molecular Ecology Resources, 14, 1314–1321.
- Levi, F., Boutoute, M., & Mayzaud, P. (2005). Lipid composition of Symphodus ocellatus (Perciforme: Labridae) in the north-western Mediterranean: Influence of two different biotopes. Marine Biology, 146, 805–814.
- Macpherson, E., Gordoa, A., & Garcı́a-Rubies, A. (2002). Biomass size spectra in Littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine, Coastal and Shelf Science, 55, 777–788.
- Nielsen, E. E., Hemmer-Hansen, J., Larsen, P. F., & Bekkevold, D. (2009). Population genomics of marine fishes: Identifying adaptive variation in space and time. Molecular Ecology, 18, 3128–3150.
- Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., & Hedrick, P. W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics, 26, 177–187.
- Palacín, C., Turon, X., Ballesteros, M., Giribet, G., & López, S. (1998). Stock evaluation of three littoral echinoid species on the Catalan coast North-Western Mediterranean. Marine Ecology, 19, 163–177.
- Pérez-Portela, R., Riesgo, A., Wangensteen, O. S., Palacín, C., & Turon, X. (2020). Enjoying the warming Mediterranean: Transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities. Molecular Ecology, 29, 3299–3315.
- Pérez-Portela, R., Wangensteen, O. S., Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C., & Turon, X. (2019). Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity, 122, 244–259.
- Quignard, J. P., & Pras, A. (1986). Fishes of the North-Eastern Atlantic and the Mediterranean. Atherinidae, 1207–1210.
- Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842.
- Rivera-Colón, A. G., Rochette, N. C., & Catchen, J. M. (2021). Simulation with RADinitio improves RADseq experimental design and sheds light on sources of missing data. Molecular Ecology Resources, 21, 363–378.
- Roszik, J., Fenyőfalvi, G., Halász, L., Karányi, Z., & Székvölgyi, L. (2017). In silico restriction enzyme digests to minimize mapping bias in genomic sequencing. Molecular Therapy. Methods & Clinical Development, 6, 66–67.
- Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S., & Beheregaray, L. B. (2018). Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Molecular Ecology, 27, 1603–1620.
- Schunter, C., Vollmer, S. V., Macpherson, E., & Pascual, M. (2014). Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics, 15, 167.
- Shili, A., Souissi, A., & Bahri-Sfar, L. (2018). Morphological variations of peacock wrasse Symphodus tinca (Linnaeus, 1758) populations along Tunisian coast. Cahiers de Biologie Marine, 59, 431–439.
- Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 6, e21800.
- Theissinger, A., Fernandes, C., Formenti, G., Bista, I., Berg, P. R., Bleidorn, C., Bombarely, A., Crottini, A., Gallo, G. R., Godoy, J. A., Jentoft, S., Malukiewicz, J., Mouton, A., Oomen, R. A., Paez, S., Palsbøll, P. J., Pampoulie, C., Ruiz-López, M. J., Secomandi, S., … The European Reference Genome Atlas Consortium. (2023). How genomics can help biodiversity conservation. Trends in Genetics, 39, 545–559.
- Torrado, H., Carreras, C., Raventos, N., Macpherson, E., & Pascual, M. (2020). Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Scientific Reports, 10, 12683.
- Torrado, H., Mourre, B., Raventos, N., Carreras, C., Tintoré, J., Pascual, M., & Macpherson, E. (2021). Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Progress in Oceanography, 192, 102518.
- Torrado, H., Pegueroles, C., Raventos, N., Carreras, C., Macpherson, E., & Pascual, M. (2022). Genomic basis for early-life mortality in sharpsnout seabream. Scientific Reports, 12, 17265.
- Wangensteen, O. S., Turon, X., García-Cisneros, A., Recasens, M., Romero, J., & Palacín, C. (2011). A wolf in sheep's clothing: Carnivory in dominant sea urchins in the Mediterranean. Marine Ecology, 441, 117–128.
10.3354/meps09359 Google Scholar
- Wangensteen, O. S., Turon, X., Pérez-Portela, R., & Palacín, C. (2012). Natural or naturalized? Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the Mediterranean. PLoS One, 7, e45067.
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer International Publishing.
10.1007/978-3-319-24277-4 Google Scholar
- Yeruham, E., Rilov, G., Shpigel, M., & Abelson, A. (2015). Collapse of the echinoid Paracentrotus lividus populations in the Eastern Mediterranean—Result of climate change? Scientific Reports, 5, 1–6.
- Zander, D. C., & Sötje, I. (2002). Seasonal and geographical differences in cleaner fish activity in the Mediterranean Sea. Helgoland Marine Research, 55, 232–241.