A Review of micro RNAs changes in T2DM in animals and humans
miRNAs在2型糖尿病人类和动物中的变化
Mohammad Reza Afsharmanesh
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorZeinab Mohammadi
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorAzad Reza Mansourian
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorCorresponding Author
Seyyed Mehdi Jafari
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Correspondence
Seyyed Mehdi Jafari, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorMohammad Reza Afsharmanesh
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorZeinab Mohammadi
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorAzad Reza Mansourian
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Search for more papers by this authorCorresponding Author
Seyyed Mehdi Jafari
Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Correspondence
Seyyed Mehdi Jafari, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
enType 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
摘要
zh2型糖尿病(T2DM)及其相关并发症已成为全球重要的公共卫生问题。根据现有文献,慢性炎症与2型糖尿病的进展有密切关系。越来越多的证据表明,炎症增强了胰岛素分泌功能的丧失和靶组织对胰岛素作用的抵抗,这是2型糖尿病发展的两个关键特征。最近的研究表明,胰岛素抵抗和2型糖尿病患者血浆中炎症介质如肿瘤坏死因子α (TNF-α)和白细胞介素6 (IL-6)的浓度升高,这对这两种情况下引起炎症的过程提出了新的疑问。miRNAs是一类短链非编码RNA分子,在过去的几十年里被发现参与调节炎症、胰岛素抵抗和2型糖尿病的病理过程。这些非编码RNA特异性地由RNA诱导沉默复合物组成,并通过各种机制调节特定蛋白编码基因的表达。越来越多的证据表明,在T2DM发展过程中,一类特殊miRNA分子的表达谱发生了改变。这些修饰可作为诊断T2DM及相关疾病的潜在生物标志物。在了解了2型糖尿病可能的病理生理机制后,本文就miRNA在2型糖尿病、炎症和胰岛素抵抗中的作用进行综述。
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
REFERENCES
- 1Cho NH, Shaw J, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138: 271-281.
- 2Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017; 3(1): 1-17.
- 3DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015; 1(1): 1-22.
- 4Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2): 88-98.
- 5Cruz NG, Sousa LP, Sousa MO, Pietrani NT, Fernandes AP, Gomes KB. The linkage between inflammation and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2013; 99(2): 85-92.
- 6He Y, Ding Y, Liang B, et al. A systematic study of dysregulated microRNA in type 2 diabetes mellitus. Int J Mol Sci. 2017; 18(3): 456.
- 7Romaine SP, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015; 101(12): 921-928.
- 8Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A. MicroRNAs and type 2 diabetes mellitus: molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism. 2018; 87: 48-55.
- 9Durrani IA, Bhatti A, John P. Regulatory microRNAs in T2DM and breast cancer. Processes. 2021; 9(5): 819.
- 10Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019; 234(5): 5451-5465.
- 11O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018; 9: 402.
- 12Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75(5): 855-862.
- 13Tinel C, Lamarthée B, Anglicheau D. MicroRNAs: small molecules, big effects. Curr Opin Organ Transplant. 2021; 26(1): 10-16.
- 14Poorjam M, Mohammadi Z, Jafari SM. Aenosine Receptor Signaling in Diseases with Focus on Cancer. Jorjan Biomed J. 2022; 10: 41–55.
10.52547/jorjanibiomedj.10.1.41 Google Scholar
- 15Shahidi M, Abazari O, Dayati P, et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy. Front Bioeng Biotechnol. 2022; 10: 10.
- 16Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012; 13(4): 239-250.
- 17Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432(7014): 226-230.
- 18Nigi L, Grieco GE, Ventriglia G, et al. MicroRNAs as regulators of insulin signaling: research updates and potential therapeutic perspectives in type 2 diabetes. Int J Mol Sci. 2018; 19(12): 3705.
- 19Eliasson L, Regazzi R. Micro (RNA) management and mismanagement of the islet. J Mol Biol. 2020; 432(5): 1419-1428.
- 20Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007; 56(12): 2938-2945.
- 21Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic α-and β-cell mass. Proc Natl Acad Sci. 2009; 106(14): 5813-5818.
- 22Eliasson L. The small RNA miR-375–a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol. 2017; 456: 95-101.
- 23Shahidi M, Abazari O, Dayati P, et al. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnol Rev. 2022; 11(1): 2875-2890.
- 24Salunkhe VA, Esguerra J, Ofori J, et al. Modulation of micro RNA-375 expression alters voltage-gated Na+ channel properties and exocytosis in insulin-secreting cells. Acta Physiologica. 2015; 213(4): 882-892.
- 25El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. miR-375 targets 3′-phosphoinositide–dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes. 2008; 57(10): 2708-2717.
- 26Belgardt B-F, Ahmed K, Spranger M, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med. 2015; 21(6): 619-627.
- 27Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest. 2014; 124(6): 2722-2735.
- 28Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem. 2021; 122(7): 696-715.
- 29Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes. 2012; 61(7): 1742-1751.
- 30Sun Y, Zhou Y, Shi Y, et al. Expression of miRNA-29 in pancreatic β cells promotes inflammation and diabetes via TRAF3. Cell Rep. 2021; 34(1):108576.
- 31Tian H, Yang J, Xie Z, Liu J. MiR-486-5p regulates pancreatic β cell function in type 2 diabetes mellitus by targeting PTEN and FOXO1. Die Pharmazie-an International Journal of Pharmaceutical Sciences. 2018; 73(8): 477-481.
- 32Liau NP, Laktyushin A, Lucet IS, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. 2018; 9(1): 1558.
- 33Li Y, Luo T, Wang L, Wu J, Guo S. MicroRNA-19a-3p enhances the proliferation and insulin secretion, while it inhibits the apoptosis of pancreatic β cells via the inhibition of SOCS3. Int J Mol Med. 2016; 38(5): 1515-1524.
- 34Bao L, Fu X, Si M, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes. PloS One. 2015; 10(2):e0116067.
- 35Mohan R, Mao Y, Zhang S, et al. Differentially expressed MicroRNA-483 confers distinct functions in pancreatic β-and α-cells. J Biol Chem. 2015; 290(32): 19955-19966.
- 36Yu C-Y, Yang C-Y, Rui Z-L. MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci. 2019; 224: 67-75.
- 37Locke J, da Silva XG, Dawe H, Rutter G, Harries L. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia. 2014; 57: 122-128.
- 38Weiss M, Steiner DF, Philipson LH. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. [Updated 2014 Feb 1]. In: KR Feingold, B Anawalt, MR Blackman, et al., (eds.), Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279029/
- 39Fu Z, Gilbert R, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013; 9(1): 25-53.
- 40Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev. 2018; 98(1): 117-214.
- 41Liu M, Weiss MA, Arunagiri A, et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab. 2018; 20: 28-50.
- 42Zhang C-Y, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell. 2001; 105(6): 745-755.
- 43Hennessy E, Clynes M, Jeppesen PB, O'Driscoll L. Identification of microRNAs with a role in glucose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res Commun. 2010; 396(2): 457-462.
- 44Higuchi C, Nakatsuka A, Eguchi J, et al. Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism. 2015; 64(4): 489-497.
- 45Tang X, Tang G, Özcan S. Role of microRNAs in diabetes. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2008; 1779(11): 697-701.
- 46Title AC, Silva PN, Godbersen S, Hasenöhrl L, Stoffel M. The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival in vivo. Molecular Metabolism. 2021; 53:101267.
- 47Ofori JK, Karagiannopoulos A, Nagao M, et al. Human islet microrna-200c is elevated in type 2 diabetes and targets the transcription factor Etv5 to reduce insulin secretion. Diabetes. 2022; 71(2): 275-284.
- 48Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol. 2015; 52: 523-530.
- 49Kim M, Zhang X. The profiling and role of miRNAs in diabetes mellitus. Journal of Diabetes and Clinical Research. 2019; 1(1): 5-23.
- 50Latreille M, Herrmanns K, Renwick N, et al. miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J Mol Med. 2015; 93: 1159-1169.
- 51Matarese A, Gambardella J, Lombardi A, Wang X, Santulli G. miR-7 regulates GLP-1-mediated insulin release by targeting β-Arrestin 1. Cell. 2020; 9(7): 1621.
- 52Sekizkardes H, Chung ST, Chacko S, et al. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J Clin Invest. 2020; 130(7): 3592-3602.
- 53Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019; 234(6): 8152-8161.
- 54Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004; 279(50): 52361-52365.
- 55Ling HY, Ou HS, Feng SD, et al. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clinical and Experimental Pharmacology and Physiology. 2009; 36(9): e32-e39.
- 56Yeh C-L, Cheng I-C, Hou Y-C, Wang W, Yeh S-L. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: observations in Taiwanese. Asia Pac J Clin Nutr. 2014; 23(2): 331-337.
- 57Doumatey AP, He WJ, Gaye A, et al. Circulating MiR-374a-5p is a potential modulator of the inflammatory process in obesity. Sci Rep. 2018; 8(1): 7680.
- 58Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016; 118(5): 810-821.
- 59Atkin SL, Ramachandran V, Yousri NA, et al. Changes in blood microRNA expression and early metabolic responsiveness 21 days following bariatric surgery. Front Endocrinol. 2019; 9: 773.
- 60Villard A, Marchand L, Thivolet C, Rome S. Diagnostic value of cell-free circulating microRNAs for obesity and type 2 diabetes: a meta-analysis. Journal of Molecular Biomarkers & Diagnosis. 2015; 6(6): 251.
- 61Lozano-Bartolome J, Llaurado G, Portero-Otin M, et al. Altered expression of miR-181a-5p and miR-23a-3p is associated with obesity and TNF α-induced insulin resistance. J Clin Endocrinol Metabol. 2018; 103(4): 1447-1458.
- 62Meerson A, Traurig M, Ossowski V, Fleming J, Mullins M, Baier L. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia. 2013; 56: 1971-1979.
- 63Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013; 17(2): 185-196.
- 64Song Y, Wu L, Li M, et al. Down-regulation of MicroRNA-592 in obesity contributes to hyperglycemia and insulin resistance. EBioMedicine. 2019; 42: 494-503.
- 65Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993; 259(5091): 87-91.
- 66Uysal KT, Wiesbrock SM, GkS H. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α-mediated insulin resistance in genetic obesity. Endocrinology. 1998; 139(12): 4832-4838.
- 67Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020; 10: 1607.
- 68Li C, Qu L, Farragher C, Vella A, Zhou B. MicroRNA regulated macrophage activation in obesity. Journal of Translational Internal Medicine. 2019; 7(2): 46-52.
- 69Nakamachi Y, Kawano S, Takenokuchi M, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009; 60(5): 1294-1304.
- 70Zhu D, Pan C, Li L, et al. MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J Allergy Clin Immunol. 2013; 132(2): 426-436. e8.
- 71Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, do Nascimento Marreiro D. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition. 2017; 35: 28-35.
- 72Chaudhuri AA, So AY-L, Sinha N, et al. MicroRNA-125b potentiates macrophage activation. The Journal of Immunology. 2011; 187(10): 5062-5068.
- 73Lorente-Cebrian S, Mejhert N, Kulyte A, et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α. PloS One. 2014; 9(1):e86800.
- 74De Queiroz TM, Lakkappa N, Lazartigues E. ADAM17-mediated shedding of inflammatory cytokines in hypertension. Front Pharmacol. 2020; 11: 1154.
- 75Zhu L, Chen L, Shi C-M, et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys. 2014; 68: 283-290.
- 76Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. International Scholarly Research Notices. 2013; 2013:139239.
10.1155/2013/139239 Google Scholar
- 77Peng J, Wu Y, Deng Z, et al. MiR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity via suppression of sirtuin-1 (SIRT1). Oncotarget. 2017; 8(41): 70550-70563.
- 78Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438(7068): 685-689.
- 79Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006; 3(2): 87-98.
- 80Yan C, Chen J, Li M, et al. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice. Diabetologia. 2016; 59: 1524-1532.
- 81Zhuo S, Yang M, Zhao Y, et al. MicroRNA-451 negatively regulates hepatic glucose production and glucose homeostasis by targeting glycerol kinase–mediated gluconeogenesis. Diabetes. 2016; 65(11): 3276-3288.
- 82Rui L. Energy metabolism in the liver. Compr Physiol. 2014; 4(1): 177-197.
- 83Sui M, Jiang X, Sun H, Liu C, Fan Y. Berberine ameliorates hepatic insulin resistance by regulating microRNA-146b/SIRT1 pathway. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2021; 14: 2525-2537.
- 84Wang R-H, Kim H-S, Xiao C, Xu X, Gavrilova O, Deng C-X. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011; 121(11): 4477-4490.
- 85Fang Z, Li P, Jia W, Jiang T, Wang Z, Xiang Y. miR-696 plays a role in hepatic gluconeogenesis in Ob/Ob mice by targeting PGC-1α. Int J Mol Med. 2016; 38(3): 845-852.
- 86Wang S, Wang L, Dou L, et al. Micro RNA 152 regulates hepatic glycogenesis by targeting PTEN. FEBS J. 2016; 283(10): 1935-1946.
- 87Zheng L-F, Chen P-J, Xiao W-H. Roles and mechanism of microRNAs in the regulation of skeletal muscle insulin resistance. Sheng li Xue Bao:[Acta Physiologica Sinica]. 2019; 71(3): 497-504.
- 88Xiao D, Zhou T, Fu Y, et al. MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression. Eur J Pharmacol. 2018; 838: 170-176.
- 89Zhou T, Meng X, Che H, et al. Regulation of insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway. Cell Physiol Biochem. 2016; 38(5): 2063-2078.
- 90Honardoost M, Keramati F, Arefian E, Mohammadi Yeganeh S, Soleimani M. Network of three specific microRNAs influence type 2 diabetes through inducing insulin resistance in muscle cell lines. J Cell Biochem. 2019; 120(2): 1532-1538.
- 91Yu Y, Du H, Wei S, et al. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics. 2018; 8(8): 2171-2188.
- 92Latouche C, Natoli A, Reddy-Luthmoodoo M, Heywood SE, Armitage JA, Kingwell BA. MicroRNA-194 modulates glucose metabolism and its skeletal muscle expression is reduced in diabetes. PloS One. 2016; 11(5):e0155108.
- 93Mir SM, Aliarab A, Goodarzi G, et al. Melatonin: a smart molecule in the DNA repair system. Cell Biochem Funct. 2022; 40(1): 4-16.
- 94Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, et al. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: a case control study. PloS One. 2021; 16(6):e0251697.
- 95Flowers E, Gadgil M, Aouizerat BE, Kanaya AM. Circulating micrornas associated with glycemic impairment and progression in Asian Indians. Biomarker Research. 2015; 3(1): 1-8.
10.1186/s40364-015-0047-y Google Scholar
- 96Flowers E, Aouizerat BE, Abbasi F, et al. Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: moving towards precision health for diabetes prevention. Metabolism. 2015; 64(9): 1051-1059.
- 97Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun. 2015; 463(1–2): 60-63.
- 98Willeit P, Skroblin P, Moschen AR, et al. Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes. 2017; 66(2): 347-357.
- 99Santovito D, Toto L, De Nardis V, et al. Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes. Sci Rep. 2021; 11(1): 4136.
- 100Jones A, Danielson K, Benton M, et al. miRNA signatures of insulin resistance in obesity. Obesity (Silver Spring). 2017; 25: 1734-1744. doi:10.1002/oby.21950
- 101Jiménez-Lucena R, Camargo A, Alcalá-Diaz JF, et al. A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study. Exp Mol Med. 2018; 50(12): 1-12.
- 102Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia. 2015; 58: 900-911.
- 103Sidorkiewicz I, Niemira M, Maliszewska K, et al. Circulating miRNAs as a predictive biomarker of the progression from prediabetes to diabetes: outcomes of a 5-year prospective observational study. J Clin Med. 2020; 9(7): 2184.
- 104Wang X, Sundquist J, Zöller B, et al. Determination of 14 circulating microRNAs in swedes and Iraqis with and without diabetes mellitus type 2. PloS One. 2014; 9(1):e86792.
- 105Takada Y, Ono Y, Shibuta T, et al. Diagnosis of type 2 diabetes mellitus (T2DM) using paired microRNAs. bioRxiv. 2022; https://www.biorxiv.org/content/10.1101/2022.09.29.510072v1(2022).
- 106Yan L-N, Zhang X, Xu F, et al. Four-microRNA signature for detection of type 2 diabetes. World J Clin Cases. 2020; 8(10): 1923-1931.
- 107Luo M, Xu C, Luo Y, Wang G, Wu J, Wan Q. Circulating miR-103 family as potential biomarkers for type 2 diabetes through targeting CAV-1 and SFRP4. Acta Diabetol. 2020; 57: 309-322.
- 108Lu H, Hao L, Li S, et al. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway. Diabetologia. 2016; 59(6): 1247-1257.
- 109Su T, Hou J, Liu T, et al. MiR-34a-5p and miR-452-5p: the novel regulators of pancreatic endocrine dysfunction in diabetic Zucker rats? Int J Med Sci. 2021; 18(14): 3171-3181.
- 110Shen Y, Xu H, Pan X, et al. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp Ther Med. 2017; 14(6): 5589-5596.
- 111Al-Κafaji G, Al-Muhtaresh HA, Salem AH. Expression and clinical significance of miR-1 and miR-133 in pre-diabetes. Biomedical Reports. 2021; 14(3): 1.
- 112 Lucia la Sala, Mrakic-Sposta S, Tagliabue E, et al. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D. Cardiovasc Diabetol. 2019; 18(1): 18.
- 113Deng X, Liu Y, Luo M, et al. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 2017; 8: 63038-63046.
- 114Al-Kafaji GAMG, Alsayed NA, Hasan ZA, Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep. 2015; 12: 7485-7490.
- 115Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012; 11(11): 860-872.
- 116Krützfeldt J. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 2016; 30(5): 551-561.
- 117Van Rooij E, Kauppinen S. Development of micro RNA therapeutics is coming of age. EMBO Mol Med. 2014; 6(7): 851-864.
- 118Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011; 474(7353): 649-653.
- 119Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci. 2011; 108(52): 21075-21080.
- 120Zhou B, Li C, Qi W, et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia. 2012; 55: 2032-2043.
- 121Kölling M, Kaucsar T, Schauerte C, et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther. 2017; 25(1): 165-180.
- 122Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012; 23(3): 458-469.
- 123Mortuza R, Feng B, Chakrabarti S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia. 2014; 57: 1037-1046.
- 124Wang J-M, Tao J, Chen D-D, et al. MicroRNA miR-27b rescues bone marrow–derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014; 34(1): 99-109.
- 125Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017; 35(3): 238-248.
- 126Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017; 9-16
- 127Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Molecular Therapy-Nucleic Acids. 2017; 6: 116-132.
- 128Yu X, Zhong L. Pioglitazone/microRNA-141/FOXA2: a novel axis in pancreatic β-cells proliferation and insulin secretion. Mol Med Rep. 2018; 17(6): 7931-7938.
- 129Ying W, Tseng A, Chang RC-A, et al. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 2015; 125(11): 4149-4159.
- 130Latorre J, Ortega FJ, Linares-Pose L, et al. Compounds that modulate AMPK activity and hepatic steatosis impact the biosynthesis of microRNAs required to maintain lipid homeostasis in hepatocytes. EBioMedicine. 2020; 53:102697.
- 131Meng X, Guo J, Fang W, et al. Liver microRNA-291b-3p promotes hepatic lipogenesis through negative regulation of adenosine 5′-monophosphate (AMP)-activated protein kinase α1. J Biol Chem. 2016; 291(20): 10625-10634.
- 132Zheng H, Wan J, Shan Y, et al. MicroRNA-185-5p inhibits hepatic gluconeogenesis and reduces fasting blood glucose levels by suppressing G6Pase. Theranostics. 2021; 11(16): 7829-7843.
- 133Naghiaee Y, Didehdar R, Pourrajab F, et al. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine. 2020; 70: 498-508.
- 134Wang J, Gao Y, Duan L, et al. Metformin ameliorates skeletal muscle insulin resistance by inhibiting miR-21 expression in a high-fat dietary rat model. Oncotarget. 2017; 8(58): 98029-98039.
- 135Demirsoy İH, Ertural DY, Balci Ş, et al. Profiles of circulating miRNAs following metformin treatment in patients with type 2 diabetes. Journal of Medical Biochemistry. 2018; 37(4): 499-506.
- 136Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014; 37(5): 1375-1383.
- 137Santovito D, De Nardis V, Marcantonio P, et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metabol. 2014; 99(9): E1681-E1685.
- 138Shahidi M, Moradi A, Dayati P. Zingerone attenuates zearalenone-induced steroidogenesis impairment and apoptosis in TM3 Leydig cell line. Toxicon. 2022; 211: 50-60.
- 139Liu H, Guan H, Tan X, et al. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p. Free Radical Biology and Medicine. 2022; 181: 105-117.
- 140Liu H, Wang L, Li F, et al. The synergistic protection of EGCG and quercetin against streptozotocin (STZ)-induced NIT-1 pancreatic β cell damage via upregulation of BCL-2 expression by miR-16-5p. J Nutr Biochem. 2021; 96:108748.
- 141Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013; 72: 69-82.
- 142Mahjabeen W, Khan DA, Mirza SA. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: a randomized, placebo-controlled trial. Complement Ther Med. 2022; 66:102819.
- 143Moghasemi E, Jafari M, Saghaeian Jazi M, Hosseini M, et al. Effects of Raspberry Fruit (Rubus anatolicus (focke) foke ex hausskn (Hydroalcoholic Extract on Blood Glucose, Lipid Profile and Oxidative Stress Markers in Streptozotocin diabetic-Rats. Iranian J Nutr Sci Food Technol. 2022; 16(4): 1–8.