Effects of neprilysin and neprilysin inhibitors on glucose homeostasis: Controversial points and a promising arena
脑啡肽酶和脑啡肽酶抑制剂对葡萄糖稳态的影响:一个有争议的观点和有前景的领域
Faisal Holil AlAnazi
Department of Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
Search for more papers by this authorHayder M. Al-kuraishy
Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
Search for more papers by this authorAli I. Al-Gareeb
Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
Search for more papers by this authorAthanasios Alexiou
Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
AFNP Med, Wien, Austria
Search for more papers by this authorCorresponding Author
Marios Papadakis
Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
Correspondence
Marios Papadakis,
Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
Email: [email protected]
Search for more papers by this authorHanan A. Ogaly
Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorYousef Abud Alanazi
Department of Pediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
Search for more papers by this authorHebatallah M. Saad
Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
Search for more papers by this authorGaber El-Saber Batiha
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
Search for more papers by this authorFaisal Holil AlAnazi
Department of Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
Search for more papers by this authorHayder M. Al-kuraishy
Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
Search for more papers by this authorAli I. Al-Gareeb
Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
Search for more papers by this authorAthanasios Alexiou
Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
AFNP Med, Wien, Austria
Search for more papers by this authorCorresponding Author
Marios Papadakis
Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
Correspondence
Marios Papadakis,
Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
Email: [email protected]
Search for more papers by this authorHanan A. Ogaly
Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorYousef Abud Alanazi
Department of Pediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
Search for more papers by this authorHebatallah M. Saad
Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
Search for more papers by this authorGaber El-Saber Batiha
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
Search for more papers by this authorFaisal Holil AlAnazi and Hayder M. Al-kuraishy contributed equally to this work.
Abstract
enNeprilysin (NEP) is a transmembrane zinc-dependent metalloproteinase that inactivates various peptide hormones including glucagon-like peptide 1 (GLP-1). NEP inhibitors may be effective in the management of type 2 diabetes mellitus (T2DM) by increasing the circulating level of GLP-1. However, acute-effect NEP inhibitors may lead to detrimental effects by increasing blood glucose independent of GLP-1. These findings suggest a controversial point regarding the potential role of NEP inhibitors on glucose homeostasis in T2DM patients. Therefore, this perspective aimed to clarify the controversial points concerning the role of NEP inhibitors on glucose homeostasis in T2DM. NEP inhibitors may lead to beneficial effects by inhibition of NEP, which is involved in the impairment of glucose homeostasis through modulation of insulin resistance. NEP increases dipeptidyl peptidase-4 (DPP4) activity and contributes to increasing active GLP-1 proteolysis so NEP inhibitors may improve glycemic control through increasing endogenous GLP-1 activity and reduction of DPP4 activity. Thus, NEP inhibitors could be effective alone or in combination with antidiabetic agents in treating T2DM patients. However, long-term and short-term effects of NEP inhibitors may lead to a detrimental effect on insulin sensitivity and glucose homeostasis through different mechanisms including augmentation of substrates and pancreatic amyloid deposition. These findings are confirmed in animal but not in humans. In conclusion, NEP inhibitors produce beneficial rather than detrimental effects on glucose homeostasis and insulin sensitivity in humans though most of the detrimental effects of NEP inhibitors are confirmed in animal studies.
摘要
zh脑啡肽酶(NEP)是一种跨膜锌依赖性金属蛋白酶,可使包括胰高血糖素样肽1 (GLP-1)在内的多种肽类激素失活。NEP抑制剂可能通过提高循环GLP-1水平来有效治疗2型糖尿病(T2DM)。然而,NEP抑制剂的急性效应可能会造成血糖升高,产生有害作用,且与GLP-1无关。这些发现提示NEP抑制剂对T2DM患者血糖稳态的作用尚存有争议。本视角旨在阐明NEP抑制剂对T2DM糖稳态作用的争议点。NEP通过调节胰岛素抵抗(IR)参与糖稳态受损,NEP抑制剂可能通过抑制NEP发挥有益作用。NEP增加二肽基肽酶-4 (DPP4)活性并有助于增加GLP-1蛋白水解活性,而NEP抑制剂可能通过增加内源性GLP-1活性和降低DPP4活性来改善血糖控制。因此,NEP抑制剂可单独或联合降糖药物治疗T2DM患者。然而,NEP抑制剂的长期和短期作用机制可能不同,包括增强底物和胰腺淀粉样蛋白沉积,导致对胰岛素敏感性和葡萄糖稳态的有害影响。这些发现在动物中得到证实,但在人类中未得到证实。综上所述,NEP抑制剂对人体葡萄糖稳态和胰岛素敏感性产生有益而非有害的影响,尽管大多数有害影响已在动物研究中得到证实。
REFERENCES
- 1Nalivaeva N, Zhuravin I, Turner A. Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev. 2020; 192:111363.
- 2Wang Y, Zhou R, Lu C, Chen Q, Xu T, Li D. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling: meta-analysis. J Am Heart Assoc. 2019; 8(13):e012272.
- 3Alsubaie N, Al-kuraishy HM, Al-Gareeb AI, et al. Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci. 2022; 12(10): 1290.
- 4Solomon SD, McMurray JJ, Anand IS, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019; 381(17): 1609-1620.
- 5Pardossi-Piquard R, Dunys J, Yu G, St. George-Hyslop P, Alves da Costa C, Checler F. Neprilysin activity and expression are controlled by nicastrin. J Neurochem. 2006; 97(4): 1052-1056.
- 6Bayes-Genis A, Prickett TC, Richards AM, Barallat J, Lupón J. Soluble neprilysin retains catalytic activity in heart failure. J Heart Lung Transplant. 2016; 35(5): 684-685.
- 7Alomair BM, Al-kuraishy HM, Al-Gareeb AI, et al. Montelukast and acute coronary syndrome: the endowed drug. Pharmaceuticals. 2022; 15(9): 1147.
- 8Bayés-Genís A, Barallat J, Galán A, et al. Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J Am Coll Cardiol. 2015; 65(7): 657-665.
- 9Goliasch G, Pavo N, Zotter-Tufaro C, et al. Soluble neprilysin does not correlate with outcome in heart failure with preserved ejection fraction. Eur J Heart Fail. 2016; 18(1): 89-93.
- 10Vodovar N, Seronde M-F, Laribi S, et al. Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure. JACC. Heart Failure. 2015; 3(8): 629-636.
- 11Revuelta-López E, Núñez J, Gastelurrutia P, et al. Neprilysin inhibition, endorphin dynamics, and early symptomatic improvement in heart failure: a pilot study. ESC Heart Failure. 2020; 7(2): 559-566.
- 12Campbell DJ. Long-term neprilysin inhibition—implications for ARNIs. Nat Rev Cardiol. 2017; 14(3): 171-186.
- 13Simpson J, Jhund PS, Silva Cardoso J, et al. Comparing LCZ696 with enalapril according to baseline risk using the MAGGIC and EMPHASIS-HF risk scores: an analysis of mortality and morbidity in PARADIGM-HF. J Am Coll Cardiol. 2015; 66(19): 2059-2071.
- 14Esser N, Zraika S. Neprilysin inhibition: a new therapeutic option for type 2 diabetes? Diabetologia. 2019; 62(7): 1113-1122.
- 15Albrechtsen NJW, Møller A, Martinussen C, et al. Acute effects on glucose tolerance by neprilysin inhibition in patients with type 2 diabetes. Diabetes Obes Metab. 2020; 24(10):2017-2026.
- 16Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Guerreiro SG, Cruz-Martins N, Batiha GE-S. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med. 2021; 8:644095.
- 17Batiha GE-S, Al-kuraishy HM, Al-Maiahy TJ, et al. Plasminogen activator inhibitor 1 and gestational diabetes: the causal relationship. Diabetol Metab Syndr. 2022; 14(1): 127. doi:10.1186/s13098-022-00900-2
- 18Al-Kuraishy HM, Hussian NR, Al-Naimi MS, Al-Gareeb AI, Al-Mamorri F, Al-Buhadily AK. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal. Int J Prev Med. 2021; 12: 19.
- 19Al-Kuraishy HM, Sami OM, Hussain NR, Al-Gareeb AI. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J Adv Pharm Technol Res. 2020; 11(3): 142-147.
- 20Hussien NR, Al-Naimi MS, Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI. Sulfonylurea and neuroprotection: the bright side of the moon. J Adv Pharm Technol Res. 2018; 9(4): 120-123.
- 21Guan H, Chow K, Shah R, Rhodes C, Hersh L. Degradation of islet amyloid polypeptide by neprilysin. Diabetologia. 2012; 55(11): 2989-2998.
- 22Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Van Giau V. Type 3 diabetes and its role implications in Alzheimer's disease. Int J Mol Sci. 2020; 21(9): 3165.
- 23Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, et al. A potential link between visceral obesity and risk of Alzheimer's disease. Neurochem Res. 2022; 48: 745-766. doi:10.1007/s11064-022-03817-4
- 24Al-kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GE-S. Benzodiazepines in Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology. 2022; 31: 221-230. doi:10.1007/s10787-022-01099-4
- 25Milardi D, Gazit E, Radford SE, et al. Proteostasis of islet amyloid polypeptide: a molecular perspective of risk factors and protective strategies for type II diabetes. Chem Rev. 2021; 121(3): 1845-1893.
- 26Westermark P, Engström U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci. 1990; 87(13): 5036-5040.
- 27Bennett RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes. 2003; 52(9): 2315-2320.
- 28Zraika S, Hull RL, Udayasankar J, et al. Identification of the amyloid-degrading enzyme neprilysin in mouse islets and potential role in islet amyloidogenesis. Diabetes. 2007; 56(2): 304-310.
- 29Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011; 91(3): 795-826.
- 30Law E, Lu S, Kieffer T, et al. Differences between amyloid toxicity in alpha and beta cells in human and mouse islets and the role of caspase-3. Diabetologia. 2010; 53(7): 1415-1427.
- 31Zraika S, Aston-Mourney K, Marek P, et al. Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. J Biol Chem. 2010; 285(24): 18177-18183.
- 32Parilla JH, Hull RL, Zraika S. Neprilysin deficiency is associated with expansion of islet β-cell mass in high fat-fed mice. J Histochem Cytochem. 2018; 66(7): 523-530.
- 33Kahn S. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003; 46(1): 3-19.
- 34Standeven KF, Hess K, Carter AM, et al. Neprilysin, obesity and the metabolic syndrome. Int J Obes (Lond). 2011; 35(8): 1031-1040.
- 35Antezana MA, Sullivan SR, Usui ML, et al. Neutral endopeptidase activity is increased in the skin of subjects with diabetic ulcers. J Invest Dermatol. 2002; 119(6): 1400-1404.
- 36Willard JR, Barrow BM, Zraika S. Improved glycaemia in high-fat-fed neprilysin-deficient mice is associated with reduced DPP-4 activity and increased active GLP-1 levels. Diabetologia. 2017; 60(4): 701-708.
- 37Vodovar N, Nougue H, Launay J-M, Solal AC, Logeart D. Sacubitril/valsartan in PARADIGM-HF. Lancet Diabetes Endocrinol. 2017; 5(7): 495-496.
- 38Jurgens CA, Toukatly MN, Fligner CL, et al. β-Cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol. 2011; 178(6): 2632-2640.
- 39Simonsen L, Pilgaard S, Carr R, Kanstrup A, Holst J, Deacon C. Inhibition of neutral endopeptidase 24.11 does not potentiate the improvement in glycemic control obtained with dipeptidyl peptidase-4 inhibition in diabetic Goto–Kakizaki rats. Horm Metab Res. 2009; 41(11): 851-853.
- 40Plamboeck A, Holst J, Carr R, Deacon C. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia. 2005; 48(9): 1882-1890.
- 41Arbin V, Claperon N, Fournié-Zaluski M-C, Roques BP, Peyroux J. Effects of dual angiotensin-converting enzyme and neutral endopeptidase 24-11 chronic inhibition by mixanpril on insulin sensitivity in lean and obese Zucker rats. J Cardiovasc Pharmacol. 2003; 41(2): 254-264.
- 42Gregnani MF, Hungaro TG, Martins-Silva L, Bader M, Araujo RC. Bradykinin B2 receptor signaling increases glucose uptake and oxidation: evidence and open questions. Front Pharmacol. 2020; 11: 1162.
- 43Wu Y, Fu C, Li B, et al. Bradykinin protects human endothelial progenitor cells from high-glucose-induced senescence through B2 receptor-mediated activation of the Akt/eNOS signalling pathway. J Diabetes Res. 2021; 2021: 1-13.
- 44Davidson E, Coppey L, Lu B, et al. The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res. 2009; 2009: 1-9.
10.1155/2009/431980 Google Scholar
- 45Becker M, Siems W-E, Kluge R, et al. New function for an old enzyme: NEP deficient mice develop late-onset obesity. PLoS One. 2010; 5(9):e12793.
- 46Esser N, Barrow BM, Choung E, Shen NJ, Zraika S. Neprilysin inhibition in mouse islets enhances insulin secretion in a GLP-1 receptor dependent manner. Islets. 2018; 10(5): 175-180.
- 47Wu H, Chang C, Cheng K, Yeh C, Cheng J. Increase of plasma insulin by racecadotril, an inhibitor of enkephalinase, in wistar rats. Horm Metab Res. 2010; 42(04): 261-267.
- 48Malek V, Gaikwad AB. Neprilysin inhibitors: a new hope to halt the diabetic cardiovascular and renal complications? Biomed Pharmacother. 2017; 90: 752-759.
- 49McMurray JJ, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371: 993-1004.
- 50Packer M, Claggett B, Lefkowitz MP, et al. Effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system: a secondary analysis of the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2018; 6(7): 547-554.
- 51Seferovic JP, Claggett B, Seidelmann SB, et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2017; 5(5): 333-340.
- 52Jordan J, Stinkens R, Jax T, et al. Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther. 2017; 101(2): 254-263.
- 53Nougué H, Pezel T, Picard F, et al. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: a mechanistic clinical study. Eur J Heart Fail. 2019; 21(5): 598-605.
- 54Hupe-Sodmann K, McGregor GP, Bridenbaugh R, et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1 (7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept. 1995; 58(3): 149-156.
- 55Feng X, Gu Q, Gao G, Yuan L, Li Q, Zhang Y. The plasma levels of atrial natriuretic peptide and brain natriuretic peptide in type 2 diabetes treated with sodium-glucose cotransporter-2 inhibitor. Ann Endocrinol (Paris). 2020; 81(5): 476-481. doi:10.1016/j.ando.2020.07.1113
- 56Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab. 2020; 22(6): 938-946.
- 57Zhao Y, Zhou Y, Xiao M, et al. Impaired glucose tolerance is associated with enhanced postprandial pancreatic polypeptide secretion. J Diabetes. 2022; 14(5): 334-344.
- 58Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, delta-and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J Histochem Cytochem. 2015; 63(8): 575-591.
- 59Seymour N, Brunicardi F, Chaiken R, et al. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery. 1988; 104(2): 119-129.
- 60Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets. 2016; 20(12): 1445-1452.
- 61Corti R, Burnett JC Jr, Rouleau JL, Ruschitzka F, Lüscher TF. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation. 2001; 104(15): 1856-1862.
- 62Coué M, Moro C. Natriuretic peptide control of energy balance and glucose homeostasis. Biochimie. 2016; 124: 84-91.
- 63Coué M, Barquissau V, Morigny P, et al. Natriuretic peptides promote glucose uptake in a cGMP-dependent manner in human adipocytes. Sci Rep. 2018; 8(1): 1097.
- 64Campbell DJ. Neprilysin inhibitors and bradykinin. Front Med. 2018; 5: 257.
- 65Irhuma M, Vally M. Use of angiotensin receptor–neprilysin inhibitors in heart failure: a paradigm shift. S Afr Fam Pract. 2016; 58(5): 60-63.
10.4102/safp.v58i5.4524 Google Scholar
- 66Jankowski M, Broderick TL, Gutkowska J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord. 2016; 16(1): 1-9.
- 67Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Batiha G. Oxytocin in diabetic Covid-19 patients: a new perspective. Nat Prod Res. 2022; 36:1-2.
- 68Dargad RR, Prajapati MR, Dargad RR, Parekh JD. Sacubitril/valsartan: a novel angiotensin receptor-neprilysin inhibitor. Indian Heart J. 2018; 70: S102-S110.
- 69Poorgolizadeh E, Homayouni Moghadam F, Dormiani K, Rezaei N, Nasr-Esfahani MH. Do neprilysin inhibitors walk the line? Heart ameliorative but brain threatening! Eur J Pharmacol. 2021; 894: 173851. doi:10.1016/j.ejphar.2021.173851
- 70Davidson EP, Coppey LJ, Holmes A, Yorek MA. Effect of inhibition of angiotensin converting enzyme and/or neutral endopeptidase on vascular and neural complications in high fat fed/low dose streptozotocin-diabetic rats. Eur J Pharmacol. 2012; 677(1–3): 180-187. doi:10.1016/j.ejphar.2011.12.003
- 71Wewer Albrechtsen NJ, Møller A, Martinussen C, et al. Acute effects on glucose tolerance by neprilysin inhibition in patients with type 2 diabetes. Diabetes Obes Metab. 2022; 24(10): 2017-2026.
- 72Brar GS, Barrow BM, Watson M, et al. Neprilysin is required for angiotensin-(1-7)'s ability to enhance insulin secretion via its proteolytic activity to generate angiotensin-(1-2). Diabetes. 2017; 66(8): 2201-2212. doi:10.2337/db16-1318
- 73Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C. Is ivermectin–azithromycin combination the next step for COVID-19? Biomed Biotechnol Res J (BBRJ). 2020; 4(5): 101.
- 74Al-Kuraishy HM, Al-Gareeb AI. Effects of rosuvastatin on metabolic profile: versatility of dose-dependent effect. J Adv Pharm Technol Res. 2019; 10(1): 33.
- 75Shao C, Zucker IH, Gao L. Angiotensin type 2 receptor in pancreatic islets of adult rats: a novel insulinotropic mediator. Am J Physiol-Endocrinol Metabol. 2013; 305(10): E1281-E1291.
- 76He J, Yang Z, Yang H, et al. Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus. Peptides. 2015; 64: 49-54.
- 77Aggarwal G, Ramachandran V, Javeed N, et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice. Gastroenterology. 2012; 143(6): 1510-1517. e1.
- 78Wong HK, Tang F, Cheung TT, Cheung BMY. Adrenomedullin and diabetes. World J Diabetes. 2014; 5(3): 364.
- 79Kjeldsen SA, Hansen LH, Esser N, et al. Neprilysin inhibition increases glucagon levels in humans and mice with potential effects on amino acid metabolism. J Endocr Soc. 2021; 5(9): bvab084.
- 80Packer M. Does neprilysin inhibition potentiate or minimize the adverse effects of glucagon-like peptide-1 receptor agonists in chronic heart failure? J Card Fail. 2018; 24(2): 109-111.
- 81Aston-Mourney K, Hull RL, Zraika S, Udayasankar J, Subramanian SL, Kahn SE. Exendin-4 increases islet amyloid deposition but offsets the resultant beta cell toxicity in human islet amyloid polypeptide transgenic mouse islets. Diabetologia. 2011; 54(7): 1756-1765. doi:10.1007/s00125-011-2143-3
- 82Elshaer F, Lawand S, Mohamed Z, Al Ayoubi F, Hanfi Y, AlQarni A. Efficacy and safety outcome of angiotensin receptor-Neprilysin inhibitors (ARNIs) in patients with heart failure and preserved ejection fraction (HFpEF): preliminary results. Res Rep Clin Cardiol. 2020; 11: 39-47.