Accurate ab initio-based double many-body expansion adiabatic potential energy surface for the 22 A′ state of NH2 by extrapolation to the complete basis set limit
Yong Q. Li
Department of Physics, Liaoning University, Shenyang, 110036, People's Republic of China
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Search for more papers by this authorCorresponding Author
António J. C. Varandas
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Department of Physics, Liaoning University, Shenyang, 110036, People's Republic of ChinaSearch for more papers by this authorYong Q. Li
Department of Physics, Liaoning University, Shenyang, 110036, People's Republic of China
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Search for more papers by this authorCorresponding Author
António J. C. Varandas
Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
Department of Physics, Liaoning University, Shenyang, 110036, People's Republic of ChinaSearch for more papers by this authorAbstract
An accurate single-sheeted double many-body expansion potential energy surface (PES) is reported for the title system, which is suitable for dynamics and kinetics studies of the reactions N(2D) + H2(X1 Σ) ⇋ NH(b1 Σ+) + H(2S) and their isotopomeric variants. It is obtained using the aug-cc-pVTZ and aug-cc-pVQZ basis sets with extrapolation of the electron correlation energy to the complete basis set limit, plus extrapolation to the complete basis set limit of the complete-active-space self-consistent field energy. A switching function formalism has been used to ensure the correct behavior at the NH(A3 Π) + H(2S) and NH(b1 Σ+) + H(2S) dissociation limits. The topographical features of the new global PES are examined in detail, and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations from the literature. © 2012 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
QUA_24113_sm_SuppInfo.pdf81.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. A. Dodd, S. J. Lipson, D. J. Flanagan, W. A. M. Blumberg, J. C. Pearson, B. D. Green, J. Chem. Phys. 1991, 94, 4301.
- 2 H. Umemoto, K. Matsumoto, J. Chem. Phys. 1996, 104, 9640.
- 3 H. Umemoto, T. Asai, Y. Kimura, J. Chem. Phys. 1997, 106, 4985.
- 4 M. Alagia, N. Balucani, L. Cartechini, P. Cachavecchia, G. G. Volpi, L. A. Pederson, G. C. Schatz, G. Lendvay, L. B. Harding, T. Hollebeek, T.-S. Ho, H. Rabitz, J. Chem. Phys. 1999, 110, 8857.
- 5 A. N. Wright, C. A. Winkler, Active Nitrogen; Academic: New York, 1968.
- 6 T. Takayanagi, Y. Kurosaki, K. Yokoyama, Chem. Phys. Lett. 2000, 321, 106.
- 7 R. J. Buenker, M. Perić, S. D. Peyerimhoff, R. Marian, Mol. Phys. 1981, 43, 987.
- 8 P. Jensen, R. J. Buenker, G. Hirsch, S. N. Rai, Mol. Phys. 1990, 70, 443.
- 9 K. Funken, B. Engels, S. D. Peyerimhoff, F. Grein, Chem. Phys. Lett. 1990, 172, 180.
- 10 T. Suzuki, Y. Shihira, T. Sato, H. Umemoto, S. Tsunashima, J. Chem. Soc. Faraday Trans. 1993, 89, 995.
- 11 R. Vetter, L. Zülicke, A. Koch, E. F. van Dishoeck, S. D. Peyerimhoff, J. Chem. Phys. 1996, 104, 5558.
- 12 T. Takayanagui, H. Kobayashi, S. Tsunashima, J. Chem. Soc. Faraday Trans. 1996, 92, 1311.
- 13 L. A. Pederson, G. C. Schatz, T. Ho, T. Hollebeek, H. Rabitz, L. B. Harding, J. Chem. Phys. 1999, 110, 9091.
- 14 L. Pederson, G. Schatz, T. Hollebeek, T.-S. Ho, H. Rabitz, L. B. Harding, J. Phys. Chem. A 2000, 104, 2301.
- 15 F. Santoro, C. Petrongolo, G. C. Schatz, J. Phys. Chem. A 2002, 106, 8276.
- 16 Z. Qu, H. Zhu, R. Schinke, L. Adam, W. Hack, J. Chem. Phys. 2005, 122, 204313.
- 17 L. Adam, W. Hack, G. C. McBane, H. Zhu, Z.-W. Qu, R. Schinke, J. Chem. Phys. 2007, 126, 034304.
- 18 S. L. Zhou, D. Xie, S. Y. Lin, H. Guo, J. Chem. Phys. 2008, 128, 224316.
- 19 A. J. C. Varandas, L. A. Poveda, Theor. Chem. Acc. 2006, 116, 404.
- 20 Y. Q. Li, A. J. C. Varandas, J. Phys. Chem. A 2010, 114, 9644.
- 21 S. P. J. Rodrigues, A. C. G. Fontes, Y. Q. Li, A. J. C. Varandas, Chem. Phys. Lett. 2011, 516, 17.
- 22 R. Pd, P. Chandra, J. Chem. Phys. 2001, 114, 7450.
- 23 S. Bella, H. F. Schaefer III, J. Chem. Phys. 1977, 67, 5173.
- 24 S. D. Peyerimhoff, R. J. Buenker, Can. J. Chem. 1979, 57, 3182.
- 25 R. Brandi, E. Leonardi, C. Petrongolo, J. Phys. Chem. A 1997, 101, 5696.
- 26 Y. Yamaguchi, B. C. Hoffman, J. C. Stephens, and H. F. Schaefer, III, J. Phys. Chem. A 1999, 103, 7701.
- 27 S. Y. Lin, H. Guo, B. Jiang, S. Zhou, D. Xie, J. Phys. Chem. A 2010, 114, 9655.
- 28 S. L. Zhou, Z. Li, D. Xie, S. Y. Lin, H. Guo, J. Chem. Phys. 2009, 130, 184307.
- 29 R. P. Saxon, B. H. Lengsfield, III, B. Liu, J. Chem. Phys. 1983, 78, 312.
- 30 A. J. C. Varandas, Adv. Chem. Phys. 1988, 74, 255.
- 31 A. J. C. Varandas, Chem. Phys. Lett. 1992, 194, 333.
- 32 A. J. C. Varandas, In Lecture Notes in Chemistry, A. Laganá, A. Riganelli, Eds. Springer: Berlin, 2000; vol. 75, p. 33.
- 33 A. J. C. Varandas, Conical Intersections: Electronic Structure, Spectroscopy and Dynamics, Advanced Series in Physical Chemistry; World Scientific Publishing, Singapore, 2004; chap. 5, p. 91.
- 34 T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007.
- 35 A. J. C. Varandas, J. Chem. Phys. 2007, 126, 244105.
- 36 A. J. C. Varandas, J. Chem. Phys. 2007, 127, 114316.
- 37 H.-J. Werner, P. J. Knowles, J. Chem. Phys. 1988, 89, 5803.
- 38 P. J. Knowles, H.-J. Werner, Chem. Phys. Lett. 1988, 145, 514.
- 39 H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, Molpro, version 2008.3, a package of ab initio programs. 2008.
- 40 A. Karton, J. M. L. Martin, Theoret. Chim. Acta 2006, 115, 330.
- 41 T. Helgaker, W. Klopper, H. Koch, J. Noga, J. Chem. Phys. 1997, 106, 9639.
- 42 A. J. C. Varandas, J. Chem. Phys. 2000, 113, 8880.
- 43 A. J. C. Varandas, Chem. Phys. Lett. 2007, 443, 398.
- 44 A. J. C. Varandas, J. Chem. Phys. 2008, 129, 234103.
- 45 A. J. C. Varandas, Chem. Phys. Lett. 2008, 463, 225.
- 46 A. J. C. Varandas, J. Comput. Chem. 2009, 30, 379.
- 47 Y. Z. Song, A. J. C. Varandas, J. Chem. Phys. 2009, 130, 134317.
- 48 A. J. C. Varandas, J. Phys. Chem. A 2008, 112, 1841.
- 49 A. J. C. Varandas, J. Chem. Phys. 2009, 131, 124128.
- 50 L. A. Poveda, A. J. C. Varandas, Phys. Chem. Chem. Phys. 2005, 7, 2867.
- 51 A. J. C. Varandas, J. D. Silva, J. Chem. Soc., Faraday Trans. 1992, 288, 941.
- 52 A. J. C. Varandas, J. Mol. Struct. Theochem. 1985, 120, 401.
- 53 A. J. C. Varandas, J. Chem. Phys. 1996, 105, 3524.
- 54 A. J. C. Varandas, S. P. J. Rodrigues, J. Phys. Chem A 2006, 110, 485.
- 55 E. Martínez-Núñez, A. J. C. Varandas, J. Phys. Chem. A 2001, 105, 5923.
- 56 S. Joseph, A. J. C. Varandas, J. Phys. Chem. A 2010, 114, 2655.
- 57 C. F. Jackels, E. R. Davidson, J. Chem. Phys. 1976, 64, 2908.
- 58 C. F. Jackels, J. Chem. Phys. 1980, 72, 4873.
- 59 A. J. C. Varandas, Chem. Phys. Lett. 1987, 138, 455.
- 60 A. J. C. Varandas, J. Chem. Phys. 1979, 70, 3786.