Process–Structure–Properties Relationships of Passivating, Electron-Selective Contacts Formed by Atmospheric Pressure Chemical Vapor Deposition of Phosphorus-Doped Polysilicon
Jannatul Ferdous Mousumi
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorGeoffrey Gregory
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorJeya Prakash Ganesan
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorChristian Nunez
Schmid Thermal Systems Inc., Watsonville, CA, USA
Search for more papers by this authorKenneth Provancha
Schmid Thermal Systems Inc., Watsonville, CA, USA
Search for more papers by this authorTitel Jurca
Department of Chemistry, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorParag Banerjee
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorAravinda Kar
CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorRanganathan Kumar
Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorCorresponding Author
Kristopher O. Davis
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816 USA
FSEC Energy Research Center, Cocoa, FL, 32922 USA
Search for more papers by this authorJannatul Ferdous Mousumi
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorGeoffrey Gregory
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorJeya Prakash Ganesan
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorChristian Nunez
Schmid Thermal Systems Inc., Watsonville, CA, USA
Search for more papers by this authorKenneth Provancha
Schmid Thermal Systems Inc., Watsonville, CA, USA
Search for more papers by this authorTitel Jurca
Department of Chemistry, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorParag Banerjee
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorAravinda Kar
CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorRanganathan Kumar
Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, 32816 USA
Search for more papers by this authorCorresponding Author
Kristopher O. Davis
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816 USA
Resilient Intelligent Sustainable Energy Systems Faculty Cluster, University of Central Florida, Orlando, FL, 32816 USA
CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816 USA
FSEC Energy Research Center, Cocoa, FL, 32922 USA
Search for more papers by this authorAbstract
Herein, we investigate the process–structure–properties relationships of in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films by atmospheric pressure chemical vapor deposition (APCVD) for fabricating poly-Si passivating, electron selective contacts. This high-throughput in-line APCVD technique enables to achieve a low-cost, simple manufacturing process for crystalline silicon (c-Si) solar cells featuring poly-Si passivating contact by excluding the need for vacuum/plasma environment, and additional post-deposition doping steps. A thin layer of this P-doped poly-Si is deposited on an ultrathin (1.5 nm) silicon oxide (SiO x ) coated c-Si substrate to fabricate the passivating contact. This is followed by various post-deposition treatments, including a high-temperature annealing step and hydrogenation process. The poly-Si films are characterized to achieve a better understanding of the impacts of deposition process conditions and post-deposition treatments on the microstructure, electrical conductivity, passivation quality, and carrier selectivity of the contacts which assists to identify the optimal process conditions. In this work, the optimized annealing process with post-hydrogenation yields passivating contact with a saturation current density (J 0) of 3 fA cm−2 and an implied open-circuit voltage (iV OC) of 712 mV on planar c-Si wafer. Junction resistivity values ranging from 50 to 260 mΩ cm2 are realized for the poly-Si contacts processed in the optimal annealing condition.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
pssr202100639-sup-0001-SuppData-S1.pdf494 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 T. G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Nat. Energy 2019, 4, 914.
- 2 J. Schmidt, R. Peibst, R. Brendel, Sol. Energy Mater. Sol. Cells 2018, 187, 39.
- 3 X. Yang, Q. Bi, H. Ali, K. Davis, W. V. Schoenfeld, K. Weber, Adv. Mater. 2016, 28, 5891.
- 4 K. Öğütman, N. Iqbal, G. Gregory, M. Li, M. Haslinger, E. Cornagliotti, W. V. Schoenfeld, J. John, K. O. Davis, Phys. Status Solidi (A) 2020, 217, 2000348.
- 5 G. Gregory, C. Feit, Z. Gao, P. Banerjee, T. Jurca, K. O. Davis, Phys. Status Solidi (A) 2020, 217, 2000093.
- 6 M. T. S. K. Ah Sen, P. Bronsveld, A. Weeber, Solar Energy Mater. Sol. Cells 2021, 230, 111139.
- 7 C. Battaglia, S. M. de Nicolás, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, Appl. Phys. Lett. 2014, 104, 113902.
- 8 B. Macco, M. Bivour, J. H. Deijkers, S. B. Basuvalingam, L. E. Black, J. Melskens, B. W. H. van de Loo, W. J. H. Berghuis, M. Hermle, W. M. M. E. Kessels, Appl. Phys. Lett. 2018, 112, 242105.
- 9
S. De Wolf, A. Descoeudres, Z. C. Holman, C. Ballif, Green 2012, 2, 1.
10.1515/green-2011-0018 Google Scholar
- 10 J. Haschke, O. Dupré, M. Boccard, C. Ballif, Sol. Energy Mater. Sol. Cells 2018, 187, 140.
- 11 F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2014, 120, 270.
- 12 F. Feldmann, C. Reichel, R. Müller, M. Hermle, Sol. Energy Mater. Sol. Cells 2017, 159, 265.
- 13 N. Nandakumar, J. Rodriguez, T. Kluge, T. Große, L. Fondop, P. Padhamnath, N. Balaji, M. König, S. Duttagupta, Progr. Photovoltaics: Res. Applic. 2019, 27, 107.
- 14 D. Chen, Y. Chen, Z. Wang, J. Gong, C. Liu, Y. Zou, Y. He, Y. Wang, L. Yuan, W. Lin, R. Xia, L. Yin, X. Zhang, G. Xu, Y. Yang, H. Shen, Z. Feng, P. P. Altermatt, P. J. Verlinden, Sol. Energy Mater. Sol. Cells 2020, 206, 110258.
- 15 A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells 2017, 173, 96.
- 16 B. Kafle, B. S. Goraya, S. Mack, F. Feldmann, S. Nold, J. Rentsch, Sol. Energy Mater. Sol. Cells 2021, 227, 111100.
- 17 F. Haase, C. Hollemann, S. Schäfer, A. Merkle, M. Rienäcker, J. Krügener, R. Brendel, R. Peibst, Sol. Energy Mater. Sol. Cells 2018, 186, 184.
- 18 S. Schäfer, F. Haase, C. Hollemann, J. Hensen, J. Krügener, R. Brendel, R. Peibst, Sol. Energy Mater. Sol. Cells 2019, 200, 110021.
- 19 C. Hollemann, F. Haase, S. Schäfer, J. Krügener, R. Brendel, R. Peibst, Progr. Photovoltaics: Res. Applic. 2019, 27, 950.
- 20 H. Park, H. Park, S. J. Park, S. Bae, H. Kim, J. W. Yang, J. Y. Hyun, C. H. Lee, S. H. Shin, Y. Kang, H.-S. Lee, D. Kim, Sol. Energy Mater. Sol. Cells 2019, 189, 21.
- 21 M. K. Stodolny, J. Anker, B. L. Geerligs, G. J. Janssen, B. W. van de Loo, J. Melskens, R. Santbergen, O. Isabella, J. Schmitz, M. Lenes, J.-M. Luchies, W. M. Kessels, I. Romijn, Energy Procedia 2017, 124, 635.
- 22 J.-I. Polzin, F. Feldmann, B. Steinhauser, M. Hermle, S. Glunz, in AIP Conference Proceedings , Vol. 1999, AIP Publishing LLC, Lausanne, Switzerland 2018, p. 040018.
- 23 T. N. Truong, D. Yan, C.-P. T. Nguyen, T. Kho, H. Guthrey, J. Seidel, M. Al-Jassim, A. Cuevas, D. Macdonald, H. T. Nguyen, Progr. Photovoltaics: Res. Applic. 2021, https://doi.org/10.1002/pip.3411.
- 24 J. F. Mousumi, H. Ali, G. Gregory, C. Nunez, K. Provancha, S. Seren, H. Zunft, K. O. Davis, J. Phys. D: Appl. Phys. 2021, 54, 384003.
- 25 A. Moldovan, F. Feldmann, K. Kaufmann, S. Richter, M. Werner, C. Hagendorf, M. Zimmer, J. Rentsch, M. Hermle, in 2015 IEEE 42nd Photovoltaic Specialist Conf. (PVSC) , IEEE, New Orleans, LA 2015, pp. 1–6.
- 26 Z. Iqbal, S. Veprek, J. Phys. C: Solid State Phys. 1982, 15, 377.
- 27 N. Nickel, P. Lengsfeld, I. Sieber, Phys. Rev. B 2000, 61, 15558.
- 28 Y. Wada, S. Nishimatsu, J. Electrochem. Soc. 1978, 125, 1499.
- 29 P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Springer Berlin Heidelberg, Berlin, Heidelberg 1912, pp. 387–409.
- 30 T. Matsuyama, K. Wakisaka, M. Kameda, M. Tanaka, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Jpn. J. Appl. Phys. 1990, 29, 2327.
- 31 K. Lücke, K. Detert, Acta Metall. 1957, 5, 628.
- 32 D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, A. G. Aberle, Thin Solid Films 2006, 513, 356.
- 33 J. Y. Seto, J. Appl. Phys. 1975, 46, 5247.
- 34 M. Frat, H. S. Radhakrishnan, M. R. Payo, F. Duerinckx, L. Tous, J. Poortmans, Solar Energy 2022, 231 78.
- 35 N. D. Arora, J. R. Hauser, D. J. Roulston, IEEE Trans. Electron Devices 1982, 29, 292.
- 36 W. Thurber, R. Mattis, Y. Liu, J. Filliben, J. Electrochem. Soc. 1980, 127, 1807.
- 37 T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, Springer Science & Business Media, Cham 2012.
- 38 D. Kruger, P. Gaworzewski, R. Kurps, J. Schlote, Semicond. Sci. Technol. 1995, 10, 326.
- 39 W. Liu, X. Yang, J. Kang, S. Li, L. Xu, S. Zhang, H. Xu, J. Peng, F. Xie, J.-H. Fu, K. Wang, J. Liu, A. Alzahrani, S. De Wolf, ACS Appl. Energy Mater. 2019, 2, 4609.
- 40 Z. Rui, Y. Zeng, X. Guo, Q. Yang, Z. Wang, C. Shou, W. Ding, J. Yang, X. Zhang, Q. Wang, H. Jin, M. Liao, S. Huang, B. Yan, J. Ye, Solar Energy 2019, 194, 18.
- 41 A. Richter, S. W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 2012, 86, 165202.
- 42 B. Nemeth, D. L. Young, M. R. Page, V. LaSalvia, S. Johnston, R. Reedy, P. Stradins, J. Mater. Res. 2016, 31, 671.
- 43 R. Peibst, U. Römer, Y. Larionova, M. Rienäcker, A. Merkle, N. Folchert, S. Reiter, M. Turcu, B. Min, J. Krügener, D. Tetzlaff, E. Bugiel, T. Wietler, R. Brendel, Sol. Energy Mater. Solar Cells 2016, 158, 60.
- 44 H. Kim, S. Bae, K.-S. Ji, S. M. Kim, J. W. Yang, C. H. Lee, K. D. Lee, S. Kim, Y. Kang, H.-S. Lee, D. Kim, Appl. Surf. Sci. 2017, 409, 140.
- 45 Q. Wang, W. Wu, N. Yuan, Y. Li, Y. Zhang, J. Ding, Sol. Energy Mater. Solar Cells 2020, 208, 110423.
- 46 F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle, S. W. Glunz, Sol. Energy Mater. Solar Cells 2014, 131, 46.
- 47 B. W. van de Loo, B. Macco, M. Schnabel, M. K. Stodolny, A. A. Mewe, D. L. Young, W. Nemeth, P. Stradins, W. M. Kessels, Sol. Energy Mater. Solar Cells 2020, 215, 110592.
- 48 R. A. Sinton, A. Cuevas, Appl. Phys. Lett. 1996, 69, 2510.
- 49 D. Kane, R. Swanson, in IEEE Photovoltaic Specialists Conf. 18, IEEE, Piscataway, NJ 1985, pp. 578–583.
- 50 N. Iqbal, M. Li, G. Gregory, S. Dahal, S. Bowden, K. O. Davis, Phys. Status Solidi (RRL) 2020, 2000368.
- 51 D. Schroder, D. Meier, IEEE Trans. Electron Devices 1984, 31, 637.
- 52 S. Guo, G. Gregory, A. M. Gabor, W. V. Schoenfeld, K. O. Davis, Solar Energy 2017, 151, 163.
- 53 G. Gregory, M. Li, A. Gabor, A. Anselmo, Z. Yang, H. Ali, N. Iqbal, K. O. Davis, IEEE J. Photovoltaics 2019, 9, 1800.
- 54 M. Li, N. Iqbal, Z. Yang, X. Lin, N. K. Pannaci, C. Avalos, T. Shaw, T. Jurca, K. Davis, IEEE J. Photovoltaics 2020, 10, 1277.