Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G
Jawid N. Ahmad
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Jawid N. Ahmad and Jingjing Li contributed equally to this work.
Search for more papers by this authorJingjing Li
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Jawid N. Ahmad and Jingjing Li contributed equally to this work.
Search for more papers by this authorLada Biedermannová
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorMilan Kuchař
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorHana Šípová
Institute of Photonics and Electronics of the ASCR, v. v. i., Chaberská 57, 182 51 Prague, Czech Republic
Search for more papers by this authorAlena Semerádtová
Faculty of Science, Jan Evangelista Purkyně University, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
Search for more papers by this authorJiří Černý
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorHana Petroková
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorPavel Mikulecký
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Polínek
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorOndřej Staněk
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Vondrášek
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Homola
Institute of Photonics and Electronics of the ASCR, v. v. i., Chaberská 57, 182 51 Prague, Czech Republic
Search for more papers by this authorJan Malý
Faculty of Science, Jan Evangelista Purkyně University, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
Search for more papers by this authorRadim Osička
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorPeter Šebo
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Petr Malý
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Praha 4, Czech Republic===Search for more papers by this authorJawid N. Ahmad
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Jawid N. Ahmad and Jingjing Li contributed equally to this work.
Search for more papers by this authorJingjing Li
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Jawid N. Ahmad and Jingjing Li contributed equally to this work.
Search for more papers by this authorLada Biedermannová
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorMilan Kuchař
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorHana Šípová
Institute of Photonics and Electronics of the ASCR, v. v. i., Chaberská 57, 182 51 Prague, Czech Republic
Search for more papers by this authorAlena Semerádtová
Faculty of Science, Jan Evangelista Purkyně University, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
Search for more papers by this authorJiří Černý
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorHana Petroková
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorPavel Mikulecký
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Polínek
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorOndřej Staněk
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Vondrášek
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorJiří Homola
Institute of Photonics and Electronics of the ASCR, v. v. i., Chaberská 57, 182 51 Prague, Czech Republic
Search for more papers by this authorJan Malý
Faculty of Science, Jan Evangelista Purkyně University, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
Search for more papers by this authorRadim Osička
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorPeter Šebo
Institute of Microbiology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Petr Malý
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
Institute of Biotechnology of the ASCR, v. v. i., Vídeňská 1083, 142 20 Praha 4, Czech Republic===Search for more papers by this authorAbstract
Recombinant ligands derived from small protein scaffolds show promise as robust research and diagnostic reagents and next generation protein therapeutics. Here, we derived high-affinity binders of human interferon gamma (hIFNγ) from the three helix bundle scaffold of the albumin-binding domain (ABD) of protein G from Streptococcus G148. Computational interaction energy mapping, solvent accessibility assessment, and in silico alanine scanning identified 11 residues from the albumin-binding surface of ABD as suitable for randomization. A corresponding combinatorial ABD scaffold library was synthesized and screened for hIFNγ binders using in vitro ribosome display selection, to yield recombinant ligands that exhibited Kd values for hIFNγ from 0.2 to 10 nM. Molecular modeling, computational docking onto hIFNγ, and in vitro competition for hIFNγ binding revealed that four of the best ABD-derived ligands shared a common binding surface on hIFNγ, which differed from the site of human IFNγ receptor 1 binding. Thus, these hIFNγ ligands provide a proof of concept for design of novel recombinant binding proteins derived from the ABD scaffold. Proteins 2011. © 2012 Wiley Periodicals, Inc.
REFERENCES
- 1 Muller U,Steinhoff U,Reis LFL,Hemmi S,Pavlovic J,Zinkernagel RM,Aguet M. Functional-role of type-I and type-II interferons in antiviral defense. Science 1994; 264: 1918–1921.
- 2 Goodbourn S,Didcock L,Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000; 81(Part 10): 2341–2364.
- 3 Randall RE,Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89(Part 1): 1–47.
- 4 Ealick SE,Cook WJ,Vijaykumar S,Carson M,Nagabhushan TL,Trotta PP,Bugg CE. 3-Dimensional structure of recombinant human interferon-gamma. Science 1991; 252: 698–702.
- 5 Lunn CA,Davies L,Dalgarno D,Narula SK,Zavodny PJ,Lundell D. An active covalently linked dimer of human interferon-gamma—subunit orientation in the native protein. J Biol Chem 1992; 267: 17920–17924.
- 6 Thiel DJ,le Du MH,Walter RL,D'Arcy A,Chene C,Fountoulakis M,Garotta G,Winkler FK,Ealick SE. Observation of an unexpected third receptor molecule in the crystal structure of human interferon-gamma receptor complex. Structure 2000; 8: 927–936.
- 7 Binz HK,Pluckthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2005; 16: 459–469.
- 8 Nygren PA,Skerra A. Binding proteins from alternative scaffolds. J Immunol Methods 2004; 290: 3–28.
- 9 Skerra A. Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 2007; 18: 295–304.
- 10 Dennis MS,Lazarus RA. Kunitz domain inhibitors of tissue factor-factor Viia. 1. Potent inhibitors selected from libraries by phage display. J Biol Chem 1994; 269: 22129–22136.
- 11 Koide A,Bailey CW,Huang XL,Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 1998; 284: 1141–1151.
- 12 Nord K,Gunneriusson E,Ringdahl J,Stahl S,Uhlen M,Nygren PA. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1997; 15: 772–777.
- 13 Nygren PA,Uhlen M. Scaffolds for engineering novel binding sites in proteins. Curr Opin Struct Biol 1997; 7: 463–469.
- 14 Hey T,Fiedler E,Rudolph R,Fiedler M. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 2005; 23: 514–522.
- 15 Hosse RJ,Rothe A,Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci 2006; 15: 14–27.
- 16 Smith GP. Filamentous fusion phage—novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315–1317.
- 17 Mattheakis LC,Bhatt RR,Dower WJ. An in-vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 1994; 91: 9022–9026.
- 18 Leung DW,Chen E,Goeddel DV. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1989; 1: 11–15.
- 19 Forrer P,Binz HK,Stumpp MT,Pluckthun A. Consensus design of repeat proteins. Chembiochem 2004; 5: 183–189.
- 20 Binz HK,Stumpp MT,Forrer P,Amstutz P,Pluckthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 2003; 332: 489–503.
- 21 Stumpp MT,Forrer P,Binz HK,Pluckthun A. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 2003; 332: 471–487.
- 22 Wiederstein M,Sippl MJ. Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. J Mol Biol 2005; 345: 1199–1212.
- 23 Johansson MU,Frick IM,Nilsson H,Kraulis PJ,Hober S,Jonasson P,Linhult M,Nygren PA,Uhlen M,Bjorck L,Drakenberg T,Forsen S,Wikstrom M. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem 2002; 277: 8114–8120.
- 24 Kraulis PJ,Jonasson P,Nygren PA,Uhlen M,Jendeberg L,Nilsson B,Kordel J. The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. FEBS Lett 1996; 378: 190–194.
- 25 Nygren PA,Ljungquist C,Tromborg H,Nustad K,Uhlen M. Species-dependent binding of serum albumins to the streptococcal receptor protein-G. Eur J Biochem 1990; 193: 143–148.
- 26 Linhult M,Binz HK,Uhlen M,Hober S. Mutational analysis of the interaction between albumin-binding domain from streptococcal protein G and human serum albumin. Protein Sci 2002; 11: 206–213.
- 27 Lejon S,Frick IM,Bjorck L,Wikstrom M,Svensson S. Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem 2004; 279: 42924–42928.
- 28 Jonsson A,Dogan J,Herne N,Abrahmsen L,Nygren PA. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel 2008; 21: 515–527.
- 29 Alm T,Yderland L,Nilvebrant J,Halldin A,Hober S. A small bispecific protein selected for orthogonal affinity purification. Biotechnol J 2010; 5: 605–617.
- 30 Bendova-Biedermannova L,Hobza P,Vondrasek J. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Proteins: Struct Funct Bioinform 2008; 72: 402–413.
- 31 Cornell WD,Cieplak P,Bayly CI,Gould IR,Merz KM,Ferguson DM,Spellmeyer DC,Fox T,Caldwell JW,Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–5197.
- 32 Case DA,Darden TA,Cheatham TEI,Simmerling CL,Wang J,Duke RE,Luo R,Merz KM,Wang B,Pearlman DA,Crowley M,Brozell S,Tsui V,Gohlke H,Mongan J,Hornak V,Cui G,Beroza P,Schafmeister C,Caldwell JW,Ross WS,Kollman PA. AMBER 8. San Francisco: University of California; 2004.
- 33 Tsui V,Case DA. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 2000; 56: 275–291.
- 34 Cavallo L,Kleinjung J,Fraternali F. POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res 2003; 31: 3364–3366.
- 35 Fraternali F. POPS server, Vol. 2008. Available at: http://mathbio. nimr.mrc.ac.uk/wiki/POPS. Accessed on November 2, 2011.
- 36 Yin SY,Ding F,Dokholyan NV. Eris: an automated estimator of protein stability. Nat Methods 2007; 4: 466–467.
- 37 Yin S,Ding F,Dokholyan NV. Eris protein stability. 2007; Available at: http://eris.dokhlab.org. Accessed on November 2, 2011.
- 38 Zahnd C,Amstutz P,Pluckthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007; 4: 269–279.
- 39 Larkin MA,Blackshields G,Brown NP,Chenna R,McGettigan PA,McWilliam H,Valentin F,Wallace IM,Wilm A,Lopez R,Thompson JD,Gibson TJ,Higgins DG. Clustal W and clustal X version 2.0. Bioinformatics 2007; 23: 2947–2948.
- 40 Eswar N,John B,Mirkovic N,Fiser A,Ilyin VA,Pieper U,Stuart AC,Marti-Renom MA,Madhusudhan MS,Yerkovich B,Sali A. Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 2003; 31: 3375–3380.
- 41 Schymkowitz J,Borg J,Stricher F,Nys R,Rousseau F,Serrano L. The FoldX web server: an online force field. Nucleic Acids Res 2005; 33: W382–W388.
- 42 Comeau SR,Kozakov D,Brenke R,Shen Y,Beglov D,Vajda S. ClusPro: performance in CAPRI rounds 6-11 and the new server. Proteins: Struct Funct Bioinform 2007; 69: 781–785.
- 43 Hess B,Kutzner C,van der Spoel D,Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4: 435–447.
- 44 Duan Y,Wu C,Chowdhury S,Lee MC,Xiong GM,Zhang W,Yang R,Cieplak P,Luo R,Lee T,Caldwell J,Wang JM,Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003; 24: 1999–2012.
- 45 Vaisocherová H,Zítová A,Lachmanová M,Štěpánek J,Králíková S,Liboska R,Rejman D,Rosenberg I,Homola J. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 2006; 82: 394–398.
- 46 Vaisocherová H,Snášel J,Špringer T,Šípová H,Rosenberg I,Štěpánek J,Homola J. Surface plasmon resonance study on HIV-1 integrase strand transfer activity. Anal Bioanal Chem 2009; 393: 1165–1172.
- 47 Ansari S,Helms V. Statistical analysis of predominantly transient protein-protein interfaces. Proteins: Struct Funct Bioinform 2005; 61: 344–355.
- 48
Glaser F,Steinberg DM,Vakser IA,Ben-Tal N.
Residue frequencies and pairing preferences at protein-protein interfaces.
Proteins: Struct Funct Genet
2001;
43:
89–102.
10.1002/1097-0134(20010501)43:2<89::AID-PROT1021>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 49 Yin S,Ding F,Dokholyan NV. Modeling backbone flexibility improves protein stability estimation. Structure 2007; 15: 1567–1576.
- 50 Fountoulakis M,Juranville JF,Stuber D,Weibel EK,Garotta G. Purification and biochemical-characterization of a soluble human interferon-gamma receptor expressed in Escherichia coli. J Biol Chem 1990; 265: 13268–13275.
- 51 Nord K,Nilsson J,Nilsson B,Uhlen M,Nygren PA. A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng 1995; 8: 601–608.
- 52 Nord K,Nord O,Uhlen M,Kelley B,Ljungqvist C,Nygren PA. Recombinant human factor VIII-specific affinity ligands selected from phage-displayed combinatorial libraries of protein A. Eur J Biochem 2001; 268: 4269–4277.
- 53 Kronqvist N,Malm M,Gostring L,Gunneriusson E,Nilsson M,Guthenberg IH,Gedda L,Frejd FY,Stahl S,Lofblom J. Combining phage and staphylococcal surface display for generation of ErbB3-specific affibody molecules. Protein Eng Des Sel 2011; 24: 385–396.