Effects of point mutations in pVHL on the binding of HIF-1α
Corresponding Author
Carmen Domene
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom===Search for more papers by this authorChristopher J. R. Illingworth
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
Search for more papers by this authorCorresponding Author
Carmen Domene
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom===Search for more papers by this authorChristopher J. R. Illingworth
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
Search for more papers by this authorAbstract
The von Hippel-Lindau tumor suppressor protein (pVHL) has an essential role in the regulation of the hypoxia response pathway in animal cells. Under normoxic conditions, the hypoxia-inducible factor (HIF) undergoes trans-4-prolyl hydroxylation and is subsequently recognised by the β-domain of pVHL, leading to the ubiquitination and degradation of HIF. Mutations of pVHL alter the binding of HIF. A subset of relevant clinically observed mutations to pVHL are thought to cause weaker binding of HIF-1α and are associated with cancer and cardiovascular diseases. Here, we present computational studies analyzing the interaction of HIF with mutant forms of pVHL, describing at atomic detail the local structural reorganization caused by substitution of certain residues of pVHL. The results reveal that the canonical configuration in the wild-type system is vital for the efficient functioning of the complex and that mutation of any of the residues implicated in the h-bond network in the binding site disrupts HIF binding. Although the experimentally observed ordering of binding energies for mutants of Tyr98 is reproduced, our examination of a broader range of mutations does not support the hypothesis of a correlation between the degree of disruption of the pVHL/HIF-1α interaction caused by a mutation and the phenotype with which the mutation is associated. We suggest that disruption of the binding interaction is one of many factors behind the manifestation of VHL disease. Proteins 2011. © 2012 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_23230_sm_suppinfo.pdf252.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Kaelin WG,Jr,Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393–402.
- 2 Chan DA,Sutphin PD,Yen S-E,Giaccia AJ. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1{alpha}. Mol Cell Biol 2005; 25: 6415–6426.
- 3 Berra E,Benizri E,Ginouves A,Volmat V,Roux D,Pouyssegur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090.
- 4 Hon WC,Wilson MI,Harlos K,Claridge TDW,Schofield CJ,Pugh CW,Maxwell PH,Ratcliffe PJ,Stuart DI,Jones EY. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 2002; 417: 975–978.
- 5 Epstein ACR,Gleadle JM,McNeill LA,Hewitson KS,O'Rourke J,Mole DR,Mukherji M,Metzen E,Wilson MI,Dhanda A,Tian Y-M,Masson N,Hamilton DL,Jaakkola P,Barstead R,Hodgkin J,Maxwell PH,Pugh CW,Schofield CJ,Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.
- 6 Bruick RK,McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–1340.
- 7 Jaakkola P,Mole DR,Tian Y-M,Wilson MI,Gielbert J,Gaskell SJ,Kriegsheim AV,Hebestreit HF,Mukherji M,Schofield CJ,Maxwell PH,Pugh CW,Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.
- 8 Min J-H,Yang H,Ivan M,Gertler F,Kaelin WG,Jr,Pavletich NP. Structure of an HIF-1alpha–pVHL complex: hydroxyproline recognition in signaling. Science 2002; 296: 1886–1889.
- 9 Lonser RR,Glenn GM,Walther M,Chew EY,Libutti SK,Linehan WM,Oldfield EH. von Hippel-Lindau disease. Lancet 2003; 361: 2059–2067.
- 10 Clifford SC,Cockman ME,Smallwood AC,Mole DR,Woodward ER,Maxwell PH,Ratcliffe PJ,Maher ER. Contrasting effects on HIF-1{{alpha}} regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 2001; 10: 1029–1038.
- 11 Woodward ER,Eng C,McMahon R,Voutilainen R,Affara NA,Ponder BAJ,Maher ER. Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL. Hum Mol Genet 1997; 6: 1051–1056.
- 12
Zbar B,Kishida T,Chen F,Schmidt L,Maher ER,Richards FM,Crossey PA,Webster AR,Affara NA,Ferguson-Smith MA,Brauch H,Glavac D,Neumann HPH,Tisherman S,Mulvihill JJ,Gross DJ,Shuin T,Whaley J,Seizinger B,Kley N,Olschwang S,Boisson C,Richard S,Lips CHM,Linehan WM,Lerman M.
Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan.
Hum Mutat
1996;
8:
348–357.
10.1002/(SICI)1098-1004(1996)8:4<348::AID-HUMU8>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 13 Ivan M,Kaelin WG. The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev 2001; 11: 27–34.
- 14 Barry RE,Krek W. The von Hippel-Lindau tumour suppressor: a multi-faceted inhibitor of tumourigenesis. Trends Mol Med 2004; 10: 466–472.
- 15 Ohh M,Park CW,Ivan N,Hoffman MA,Kim TY,Huang LE,Pavletich N,Chau V,Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2: 423–427.
- 16 Rathmell WK,Hickey MM,Bezman NA,Chmielecki CA,Carraway NC,Simon MC. In vitro and in vivo models analyzing von Hippel-Lindau disease-specific mutations. Cancer Res 2004; 64: 8595–8603.
- 17 Knauth K,Bex C,Jemth P,Buchberger A. Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1 alpha interactions. Oncogene 2006; 25: 370–377.
- 18 Chen F,Kishida T,Yao M,Hustad T,Glavac D,Dean M,Gnarra JR,Orcutt ML,Duh FM,Glenn G,Green J,Hsia YE,Lamiell J,Li H,Wei MH,Schmidt L,Tory K,Kuzmin I,Stackhouse T,Latif F,Linehan WM,Lerman M,Zbar B. Germline mutations in the von Hippel-Lindau tumor-suppressor gene: correlations with phenotype. Hum Mutat 1995; 5: 66–75.
- 19 Ong KR,Woodward ER,Killick P,Lim C,Macdonald F,Maher ER. Genotype–phenotype correlations in von Hippel-Lindau disease. Hum Mutat 2007; 28: 143–149.
- 20 Hergovich A,Lisztwan J,Barry R,Ballschmieter P,Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 2003; 5: 64–70.
- 21 Kwasigroch JM,Chomilier J,Mornon JP. A global taxonomy of loops in globular proteins. J Mol Biol 1996; 259: 855–872.
- 22 Wojcik J,Mornon JP,Chomilier J. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol 1999; 289: 1469–1490.
- 23
Stolle C,Glenn G,Zbar B,Humphrey JS,Choyke P,Walther M,Pack S,Hurley K,Andrey C,Klausner R,Linehan WM.
Improved detection of germline mutations in the von Hippel Lindau disease tumor suppressor gene.
Hum Mutat
1998;
12:
417–423.
10.1002/(SICI)1098-1004(1998)12:6<417::AID-HUMU8>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 24 Whaley JM,Naglich J,Gelbert L,Hsia YE,Lamiell JM,Green JS,Collins D,Neumann HPH,Laidlaw J,Li FP,Kleinszanto AJP,Seizinger BR,Kley N. Germ-line mutations in the von Hipel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadi renal-cell carcinoma. Am J Hum Genet 1994; 55: 1092–1102.
- 25 Kondo K,Sakai N,Kaneko S,Kobayashi K,Hosaka M,Ito S,Fujii S,Yamamoto I,Kim I,Miyagami M,Shidara N,Shinohara N,Koyanagi T,Kato N,Yamanaka H,Kuratu JI,Fujioka M,Nakatsu H,Shimazaki J,Yoshida J,Sugita K,Hirao Y,Okajima E,Tanigawa T,Sato S,Fujino H,Nagata M,Kanayama H,Kagawa S,Yamashima T,Furuta T,Saito Y,Hara T,Murayama KI,Hiratsuka Y,Shimosegawa T,Maekawa M,Miyahara S,Numata K,Kawamura J,Ogawa O,Yoshida O,Miki M,Takeda N,Tanaka R,Kinoshita H,Sekine T,Yokota J,Kakizoe T,Kogawa T,Kanno H,Yao M,Shuin T. Germline mutations in the von Hippel-Lindau disease (VHL) gene in Japanese VHL. Hum Mol Genet 1995; 4: 2233–2237.
- 26 Gnarra JR,Tory K,Weng Y,Schmidt L,Wei MH,Li H,Latif F,Liu S,Chen F,Duh FM,Lubensky I,Duan DR,Florence C,Pozzatti R,Walther MM,Bander NH,Grossman HB,Brauch H,Pomer S,Brooks JD,Isaacs WB,Lerman MI,Zbar B,Linehan WM. Mutations of the VHL tumor-suppressor gene in renal-carcinoma. Nat Genet 1994; 7: 85–90.
- 27 Brauch H,Kishida T,Glavac D,Chen F,Pausch F,Hofler H,Latif F,Lerman MI,Zbar B,Neumann HPH. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the black-forest region Germany—evidence for a founder effect. Hum Genet 1995; 95: 551–556.
- 28 Glavac D,Neumann HPH,Wittke C,Jaenig H,Masek O,Streicher T,Pausch F,Engelhardt D,Plate KH,Hofler H,Chen F,Zbar B,Brauch H. Mutations in the VHL tumor suppressor gene and associated lesions in families with von Hippel-Lindau disease from central Europe. Hum Genet 1996; 98: 271–280.
- 29 Tokuriki N,Stricher F,Schymkowitz J,Serrano L,Tawfik DS. The stability effects of protein mutations appear to be universally distributed. J Mol Biol 2007; 369: 1318–1332.
- 30 Schymkowitz J,Borg J,Stricher F,Nys R,Rousseau F,Serrano L. The FoldX web server: an online force field. Nucleic Acids Res 2005; 33: W382–W388.
- 31 Parthiban V,Gromiha MM,Schomburg D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 2006; 34: W239–W242.
- 32 Capriotti E,Fariselli P,Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 2005; 33: W306–W310.
- 33 Topham CM,Srinivasan N,Blundell TL. Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 1997; 10: 7–21.
- 34 Yin SY,Ding F,Dokholyan NV. Eris: an automated estimator of protein stability. Nat Methods 2007; 4: 466–467.
- 35 Yin S,Ding F,Dokholyan NV. Modeling backbone flexibility improves protein stability estimation. Structure 2007; 15: 1567–1576.
- 36 Humphrey W,Dalke A,Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33–38.
- 37 Illingworth CJR,Loenarz C,Schofield CJ,Domene C. Chemical basis for the selectivity of the von Hippel Lindau tumor suppressor pVHL for prolyl-hydroxylated HIF-1 alpha. Biochemistry 2010; 49: 6936–6944.
- 38 MacKerell AD,Bashford D,Bellott M,Dunbrack RL,Evanseck JD,Field MJ,Fischer S,Gao J,Guo H,Ha S,Joseph-McCarthy D,Kuchnir L,Kuczera K,Lau FTK,Mattos C,Michnick S,Ngo T,Nguyen DT,Prodhom B,Reiher WE,Roux B,Schlenkrich M,Smith JC,Stote R,Straub J,Watanabe M,Wiorkiewicz-Kuczera J,Yin D,Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 39 Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M. CHARMM: a program for macromolecular energy, minimisation, and dynamics calculations. J Comput Chem 1983; 4: 187–217.
- 40 Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML. Comparison of simple potential functions for simulations of liquid water. J Chem Phys 1983; 79: 926–935.
- 41 Essmann U,Perera L,Berkowitz ML,Darden T,Lee H,Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577–8593.
- 42 Miyamoto S,Kollman PA. SETTLE—an analytical version of the Shake and Rattle algorithm for rigid water models. J Comput Chem 1992; 13: 952–962.
- 43 Tuckerman M,Berne BJ,Martyna GJ. Reversible multiple time scale molecular-dynamics. J Chem Phys 1992; 97: 1990–2001.
- 44 Martyna GJ,Tobias DJ,Klein ML. Constant pressure molecular- dynamics algorithms. J Chem Phys 1994; 101: 4177–4189.
- 45 Feller SE,Zhang YH,Pastor RW,Brooks BR. Constant-pressure molecular dynamics simulation—the langevin piston method. J Chem Phys 1995; 103: 4613–4621.
- 46 Phillips JC,Braun R,Wang W,Gumbart J,Tajkhorshid E,Villa E,Chipot C,Skeel RD,Kale L,Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802.
- 47 Kale L,Skeel R,Bhandarkar M,Brunner R,Gursoy A,Krawetz N,Philips J,Shinozaki A,Varadarajan K,Schuten K. Molecular dynamics programs design—NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 1999; 151: 283–312.
- 48 Levitt M,Perutz MF. Aromatic rings act as hydrogen-bond acceptors. J Mol Biol 1988; 201: 751–754.
- 49 Varela I,Tarpey P,Raine K,Huang D,Ong CK,Stephens P,Davies H,Jones D,Lin ML,Teague J,Bignell G,Butler A,Cho J,Dalgliesh GL,Galappaththige D,Greenman C,Hardy C,Jia MM,Latimer C,Lau KW,Marshall J,McLaren S,Menzies A,Mudie L,Stebbings L,Largaespada DA,Wessels LFA,Richard S,Kahnoski RJ,Anema J,Tuveson DA,Perez-Mancera PA,Mustonen V,Fischer A,Adams DJ,Rust A,Chan-On W,Subimerb C,Dykema K,Furge K,Campbell PJ,Teh BT,Stratton MR,Futreal PA. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.