Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: A key to allosteric behavior of this class of enzymes?
Corresponding Author
Igor Ivanov
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Oudenarder Str. 16, D-13346 Berlin, Germany===Search for more papers by this authorWeifeng Shang
European Molecular Biology Laboratory Outstation, c/o DESY, D-22603 Hamburg, Germany
Search for more papers by this authorLea Toledo
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorLaura Masgrau
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorDmitri I. Svergun
European Molecular Biology Laboratory Outstation, c/o DESY, D-22603 Hamburg, Germany
Search for more papers by this authorSabine Stehling
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Search for more papers by this authorHansel Gómez
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorAlmerinda Di Venere
IRCCS Neuromed, Pozzilli, and Department of Experimental Medicine and Biochemical Sciences, University of Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorGiampiero Mei
IRCCS Neuromed, Pozzilli, and Department of Experimental Medicine and Biochemical Sciences, University of Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorJosé M. Lluch
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorEwa Skrzypczak-Jankun
Urology Research Center, College of Medicine, University of Toledo, Toledo, Ohio 43614
Search for more papers by this authorÀngels González-Lafont
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorCorresponding Author
Hartmut Kühn
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Oudenarder Str. 16, D-13346 Berlin, Germany===Search for more papers by this authorCorresponding Author
Igor Ivanov
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Oudenarder Str. 16, D-13346 Berlin, Germany===Search for more papers by this authorWeifeng Shang
European Molecular Biology Laboratory Outstation, c/o DESY, D-22603 Hamburg, Germany
Search for more papers by this authorLea Toledo
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorLaura Masgrau
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorDmitri I. Svergun
European Molecular Biology Laboratory Outstation, c/o DESY, D-22603 Hamburg, Germany
Search for more papers by this authorSabine Stehling
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Search for more papers by this authorHansel Gómez
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorAlmerinda Di Venere
IRCCS Neuromed, Pozzilli, and Department of Experimental Medicine and Biochemical Sciences, University of Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorGiampiero Mei
IRCCS Neuromed, Pozzilli, and Department of Experimental Medicine and Biochemical Sciences, University of Tor Vergata, 00133 Rome, Italy
Search for more papers by this authorJosé M. Lluch
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorEwa Skrzypczak-Jankun
Urology Research Center, College of Medicine, University of Toledo, Toledo, Ohio 43614
Search for more papers by this authorÀngels González-Lafont
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Search for more papers by this authorCorresponding Author
Hartmut Kühn
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, D-13346 Berlin, Germany
Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Oudenarder Str. 16, D-13346 Berlin, Germany===Search for more papers by this authorAbstract
Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer–dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer–dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes. Proteins 2011. © 2012 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_23227_sm_SuppAppendix.pdf432.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.
- 2 de Luca C,Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008; 582: 97–105.
- 3 Sears DD,Miles PD,Chapman J,Ofrecio JM,Almazan F,Thapar D,Miller YI. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 2009; 4: e7250.
- 4 Klein RF,Allard J,Avnur Z,Nikolcheva T,Rotstein D,Carlos AS,Shea M,Waters RV,Belknap JK,Peltz G,Orwoll ES. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004; 303: 229–232.
- 5 Wiesner R,Suzuki H,Walther M,Yamamoto S,Kuhn H. Suicidal inactivation of the rabbit 15-lipoxygenase by 15S-HpETE is paralleled by covalent modification of active site peptides. Free Radic Biol Med 2003; 34: 304–315.
- 6 Hammel M,Walther M,Prassl R,Kuhn H. Structural flexibility of the N-terminal beta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering. Functional consequences for activity regulation and membrane binding. J Mol Biol 2004; 34: 917–929.
- 7 Ludwig P,Holzhütter H-G,Colosimo A,Silvestrini MC,Schewe T,Rapoport SM. A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem 1987; 168: 325–337.
- 8 Shang W,Ivanov I,Svergun DI,Borbulevych OY,Aleem AM,Stehling S,Jankun J,Kuhn H,Skrzypczak-Jankun E. Probing dimerization and structural flexibility of mammalian lipoxygenases by small angle X-ray scattering. J Mol Biol 2011; 409: 654–668.
- 9 Choi J,Chon JK,Kim S,Shin W. Conformational flexibility in mammalian 15S-lipoxygenase: reinterpretation of the crystallographic data. Proteins 2008; 70: 1023–1032.
- 10 Schulz EC,Tietzel M,Tovy A,Ankri S,Ficner R. Structure analysis of Entamoeba histolytica enolase. Acta Cryst D 2011; 67: 619–627.
- 11 Nooren IMA,Thornton JM. Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 2003; 325: 991–1018.
- 12 Chung I,Akita R,Vandlen R,Toomre D,Schlessinger J,Mellman I. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 2010; 464: 783–787.
- 13 Tateyama M,Abe H,Nakata H,Saito O,Kubo Y. Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1alpha. Nat Struct Mol Biol 2004; 11: 637–642.
- 14 Yuan C,Rieke CJ,Rimon G,Wingerd BA,Smith WL. Partnering between monomers of cyclooxygenase-2 homodimers. Proc Natl Acad Sci USA 2006; 103: 6142–6147.
- 15 Yuan C,Sidhu RS,Kuklev DV,Kado Y,Wada M,Song I,Smith WL. Cyclooxygenase allosterism, fatty acid-mediated cross-talk between monomers of cyclooxygenase homodimers. J Biol Chem 2009; 284: 10046–10055.
- 16 Wecksler AT,Kenyon V,Deschamps JD,Holman TR. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation. Biochemistry 2008; 47: 7364–7375.
- 17 Wecksler AT,Jacquot C,van der Donk WA,Holman TR. Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid. Biochemistry 2009; 48: 6259–6267.
- 18 Toledo L,Masgrau L,Maréchal JD,Lluch JM,González-Lafont À. Insights into the mechanism of binding of arachidonic acid to mammalian 15-lipoxygenases. J Phys Chem B 2010; 114: 7037–7046.
- 19 Roessle MW,Klaering R,Ristau U,Robrahn B,Jahn D,Gehrmann T,Konarev P,Round A,Fiedler S,Hermesa C,Svergun DI. Upgrade of the small-angle X-ray scattering beamline X33 at the European Molecular Biology Laboratory, Hamburg. J Appl Cryst 2007; 40: 190–194.
- 20 Round AR,Franke D,Moritz S,Huchler R,Fritsche M,Malthan D,Klaering R,Svergun DI,Roessle M. Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33. J Appl Cryst 2008; 41: 913–917.
- 21 Konarev PV,Volkov VV,Sokolova AV,Koch MHJ,Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 2003; 36: 1277–1282.
- 22 Petoukhov MV,Svergun DI. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 2005; 89: 1237–1250.
- 23 Svergun DI,Barberato C,Koch MHJ. CRYSOL—a program to evalate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 1995; 28: 768–773.
- 24 Brooks BR,Brooks CL,Mackerell AD,Nilsson L,Petrella RJ,Roux B,Won Y,Archontis G,Bartels C,Boresch S,Caflisch A,Caves L,Cui Q,Dinner AR,Feig M,Fischer S,Gao J,Hodoscek M,Im W,Kuczera K,Lazaridis T,Ma J,Ovchinnikov V,Paci E,Pastor RW,Post CB,Pu JZ,Schaefer M,Tidor B,Venable RM,Woodcock HL,Wu X,Yang W,York DM,Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545–1614.
- 25 Pettersen EF,Goddard TD,Huang CC,Couch GS,Greenblatt DM,Meng EC,Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605–1612.
- 26 Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 1985; 31: 1695–1697.
- 27 Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327–341.
- 28 MacKerell AD,Bashford D,Bellott M,Dunbrack RL,Evanseck JD,Field MJ,Fischer S,Gao J,Guo H,Ha S,Joseph-McCarthy D,Kuchnir L,Kuczera K,Lau FTK,Mattos C,Michnick S,Ngo T,Nguyen DT,Prodhom B,Reiher WE,Roux B,Schlenkrich M,Smith JC,Stote R,Straub J,Watanabe M,Wiorkiewicz-Kuczera J,Yin D,Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 29 MacKerell AD,Feig M,Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004; 25: 1400–1415.
- 30 Saam J,Ivanov I,Walther M,Holzhutter H-G,Kuhn H. Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 2007; 104: 13319–13324.
- 31 Feller SE,MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 2000; 104: 7510–7515.
- 32 Ivanov I,Di Venere A,Horn T,Scherer P,Nicolai E,Steling S,Richter C,Skrzypczak-Jankun E,Mei G,Maccarrone M,Kühn H. Tight association of N-terminal and catalytic subunits of rabbit 12/15-lipoxygenase is important for protein stability and catalytic activity. Biochim Biophys Acta 2011; 1811: 1001–1010.
- 33 Nikolaev Y,Pervushin K. Rethinking leucine zipper—a ubiquitous signal transduction motif. Nat Preced 2009. Available at: hdl:10101/npre.2009.3271.1.
- 34 Walther M,Anton M,Wiedmann M,Fletterick R,Kuhn H. The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding. J Biol Chem 2002; 277: 27360–27366.
- 35 Humphrey W,Dalke A,Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33–38.