Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein†
Nathalie Sibille
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Nathalie Sibille and Isabelle Huvent contributed equally to this work.
Search for more papers by this authorIsabelle Huvent
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Nathalie Sibille and Isabelle Huvent contributed equally to this work.
Search for more papers by this authorCaroline Fauquant
Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
Search for more papers by this authorDries Verdegem
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorLaziza Amniai
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorArnaud Leroy
Laboratoire de Biochimie Appliquée, Faculté de Pharmacie (Paris XI), Chatenay-Malabry, France
Search for more papers by this authorJean-Michel Wieruszeski
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorGuy Lippens
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorCorresponding Author
Isabelle Landrieu
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France===Search for more papers by this authorNathalie Sibille
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Nathalie Sibille and Isabelle Huvent contributed equally to this work.
Search for more papers by this authorIsabelle Huvent
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Nathalie Sibille and Isabelle Huvent contributed equally to this work.
Search for more papers by this authorCaroline Fauquant
Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
Search for more papers by this authorDries Verdegem
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorLaziza Amniai
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorArnaud Leroy
Laboratoire de Biochimie Appliquée, Faculté de Pharmacie (Paris XI), Chatenay-Malabry, France
Search for more papers by this authorJean-Michel Wieruszeski
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorGuy Lippens
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorCorresponding Author
Isabelle Landrieu
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France
CNRS-UMR 8576 UGSF-IFR 147, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France===Search for more papers by this authorBackbone and Cβ chemical shift assignments of TauF4 have been deposited at BMRB (www.bmrb.wisc.edu) under accession number 17945.
Abstract
Phosphorylation of the neuronal Tau protein is implicated in both the regulation of its physiological function of microtubule stabilization and its pathological propensity to aggregate into the fibers that characterize Alzheimer's diseased neurons. However, how specific phosphorylation events influence both aspects of Tau biology remains largely unknown. In this study, we address the structural impact of phosphorylation of the Tau protein by Nuclear Magnetic Resonance (NMR) spectroscopy on a functional fragment of Tau (Tau[Ser208–Ser324] = TauF4). TauF4 was phosphorylated by the proline-directed CDK2/CycA3 kinase on Thr231 (generating the AT180 epitope), Ser235, and equally on Thr212 and Thr217 in the Proline-rich region (Tau[Ser208-Gln244] or PRR). These modifications strongly decrease the capacity of TauF4 to polymerize tubulin into microtubules. While all the NMR parameters are consistent with a globally disordered Tau protein fragment, local clusters of structuration can be defined. The most salient result of our NMR analysis is that phosphorylation in the PRR stabilizes a short α-helix that runs from pSer235 till the very beginning of the microtubule-binding region (Tau[Thr245-Ser324] or MTBR of TauF4). Phosphorylation of Thr231/Ser235 creates a N-cap with helix stabilizing role while phosphorylation of Thr212/Thr217 does not induce modification of the local transient secondary structure, showing that the stabilizing effect is sequence specific. Using paramagnetic relaxation experiments, we additionally show a transient interaction between the PRR and the MTBR, observed in both TauF4 and phospho-TauF4. Proteins 2012. © 2011 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_23210_sm_suppinfotab1.pdf9 KB | Supporting Information Table S1: Chemical shift of the amide proton (HN), amide Nitrogen (N), CA and CB of the amino acid residues (Restype) of TauF4 and phospho-TauF4. Amino acid numbering (Resnum) is according to the full length Tau441. |
PROT_23210_sm_suppinfofigs.pdf115.6 KB | Supporting Information Figures |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Witman GB,Cleveland DW,Weingarten MD,Kirschner MW. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci USA 1976; 73: 4070–4074.
- 2 Cleveland DW,Hwo SY,Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 1977; 116: 207–225.
- 3 Sillen A,Barbier P,Landrieu I,Lefebvre S,Wieruszeski JM,Leroy A,Peyrot V,Lippens G. NMR investigation of the interaction between the neuronal protein tau and the microtubules. Biochemistry 2007; 46: 3055–3064.
- 4 Fauquant C,Redeker V,Landrieu I,Wieruzseski JM,Verdegem D,Laprevote O,Lippens G,Gigant B,Knossow M. Systematic identification of tubulin interacting fragments of the microtubule-associated protein TAU leads to a highly efficient promoter of microtubule assembly. J Biol Chem 2011; 286: 33358–33368.
- 5 Eliezer D,Barre P,Kobaslija M,Chan D,Li X,Heend L. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation. Biochemistry 2005; 44: 1026–1036.
- 6 Mukrasch MD,Bibow S,Korukottu J,Jeganathan S,Biernat J,Griesinger C,Mandelkow E,Zweckstetter M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 2009; 7: e34.
- 7 Mukrasch MD,Biernat J,von Bergen M,Griesinger C,Mandelkow E,Zweckstetter M. Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 2005; 280: 24978–24986.
- 8 von Bergen M,Friedhoff P,Biernat J,Heberle J,Mandelkow EM,Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci USA 2000; 97: 5129–5134.
- 9 Jeganathan S,von Bergen M,Brutlach H,Steinhoff HJ,Mandelkow E. Global hairpin folding of tau in solution. Biochemistry 2006; 45: 2283–2293.
- 10 Uversky VN. Seven lessons from one IDP structural analysis. Structure 2010; 18: 1069–1071.
- 11 Schneider A,Biernat J,von Bergen M,Mandelkow E,Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 1999; 38: 3549–3558.
- 12 Amniai L,Barbier P,Sillen A,Wieruszeski JM,Peyrot V,Lippens G,Landrieu I. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J 2009; 23: 1146–1152.
- 13 Welburn J,Endicott J. Methods for preparation of proteins and protein complexes that regulate the eukaryotic cell cycle for structural studies. Methods Mol Biol 2005; 296: 219–235.
- 14 Brown NR,Noble ME,Endicott JA,Johnson LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1999; 1: 438–443.
- 15 Goedert M,Jakes R,Crowther RA,Cohen P,Vanmechelen E,Vandermeeren M,Cras P. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem J 1994; 301(Pt 3): 871–877.
- 16 Jicha GA,Lane E,Vincent I,Otvos L,Jr,Hoffmann R,Davies P. A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J Neurochem 1997; 69: 2087–2095.
- 17 Amniai L,Lippens G,Landrieu I. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach. Biochem Biophys Res Commun 2011; 412: 743–746.
- 18 Sengupta A,Wu Q,Grundke-Iqbal I,Iqbal K,Singh TJ. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol Cell Biochem 1997; 167: 99–105.
- 19 Sengupta A,Novak M,Grundke-Iqbal I,Iqbal K. Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level. FEBS Lett 2006; 580: 5925–5933.
- 20 Castoldi M,Popov AV. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Prot Expr Purif 2003; 32: 83–88.
- 21 Verdegem D,Dijkstra K,Hanoulle X,Lippens G. Graphical interpretation of Boolean operators for protein NMR assignments. J Biomol NMR 2008; 42: 11–21.
- 22 Tamiola K,Acar B,Mulder FA. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 2010; 132: 18000–18003.
- 23 Bienkiewicz EA,Lumb KJ. Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 1999; 15: 203–206.
- 24 Wang Y,Jardetzky O. Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 2002; 124: 14075–14084.
- 25 Wang Y,Jardetzky O. Probability-based protein secondary structure identification using combined NMR chemical-shift data. Prot Sci 2002; 11: 852–861.
- 26 Wishart DS,Sykes BD. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 1994; 4: 171–180.
- 27 Wishart DS,Sykes BD,Richards FM. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992; 31: 1647–1651.
- 28 Ruckert M,Otting G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 2000; 122: 7793–7797.
- 29 Golovanov AP,Blankley RT,Avis JM,Bermel W. Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 2007; 129: 6528–6535.
- 30 Teilum K,Kragelund BB,Poulsen FM. Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling. J Mol Biol 2002; 324: 349–357.
- 31 Ishida T,Kinoshita K. Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 2008; 24: 1344–1348.
- 32 Biernat J,Mandelkow EM,Schroter C,Lichtenberg-Kraag B,Steiner B,Berling B,Meyer H,Mercken M,Vandermeeren A,Goedert M,Mandelkow E. The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 1992; 11: 1593–1597.
- 33 Grundke-Iqbal I,Iqbal K,Tung YC,Quinlan M,Wisniewski HM,Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83: 4913–4917.
- 34 Zhang H,Neal S,Wishart DS. RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 2003; 25: 173–195.
- 35 Andrew CD,Warwicker J,Jones GR,Doig AJ. Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry 2002; 41: 1897–1905.
- 36 Baker JM,Hudson RP,Kanelis V,Choy WY,Thibodeau PH,Thomas PJ,Forman-Kay JD. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 2007; 14: 738–745.
- 37 Pinheiro AS,Marsh JA,Forman-Kay JD,Peti W. Structural signature of the MYPT1-PP1 interaction. J Am Chem Soc 2011; 133: 73–80.
- 38 Eliezer D. Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 2009; 19: 23–30.
- 39 Mohana-Borges R,Goto NK,Kroon GJ,Dyson HJ,Wright PE. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings. J Mol Biol 2004; 340: 1131–1142.
- 40 Mukrasch MD,Markwick P,Biernat J,Bergen M,Bernado P,Griesinger C,Mandelkow E,Zweckstetter M,Blackledge M. Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc 2007; 129: 5235–5243.
- 41 Eidenmuller J,Fath T,Maas T,Pool M,Sontag E,Brandt R. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 2001; 357: 759–767.
- 42 Rankin CA,Sun Q,Gamblin TC. Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Brain Res Mol Brain Res 2005; 138: 84–93.
- 43 Fischer D,Mukrasch MD,Biernat J,Bibow S,Blackledge M,Griesinger C,Mandelkow E,Zweckstetter M. Conformational changes specific for pseudophosphorylation at serine 262 selectively impair binding of tau to microtubules. Biochemistry 2009; 48: 10047–10055.
- 44 Austen BM,Paleologou KE,Ali SA,Qureshi MM,Allsop D,El-Agnaf OM. Designing peptide inhibitors for oligomerization and toxicity of Alzheimer's beta-amyloid peptide. Biochemistry 2008; 47: 1984–1992.
- 45 Bielska AA,Zondlo NJ. Hyperphosphorylation of tau induces local polyproline II helix. Biochemistry 2006; 45: 5527–5537.
- 46 Daly NL,Hoffmann R,Otvos L,Jr,Craik DJ. Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer's disease. Biochemistry 2000; 39: 9039–9046.
- 47 Smet C,Sambo AV,Wieruszeski JM,Leroy A,Landrieu I,Buee L,Lippens G. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry 2004; 43: 2032–2040.
- 48 Firestine AM,Chellgren VM,Rucker SJ,Lester TE,Creamer TP. Conformational properties of a peptide model for unfolded alpha-helices. Biochemistry 2008; 47: 3216–3224.