Protein flexibility from discrete molecular dynamics simulations using quasi-physical potentials† ‡
Agustí Emperador
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
Search for more papers by this authorTim Meyer
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
Search for more papers by this authorCorresponding Author
Modesto Orozco
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Departament de Bioquímica, Facultat de Biología, Universitat de Barcelona, Av. Diagonal 647, Barcelona 08028, Spain
Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain===Search for more papers by this authorAgustí Emperador
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
Search for more papers by this authorTim Meyer
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
Search for more papers by this authorCorresponding Author
Modesto Orozco
Joint IRB-BSC Program on Computational Biology, Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Barcelona Supercomputing Centre, Jordi Girona 31, Edifici Torre Girona, Barcelona 08034, Spain
National Institute of Bioinformatics, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
Departament de Bioquímica, Facultat de Biología, Universitat de Barcelona, Av. Diagonal 647, Barcelona 08028, Spain
Institute of Research in Biomedicine, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain===Search for more papers by this authorThis article is dedicated in memory of Angel Ramirez Ortiz.
The authors state no conflict of interest.
Abstract
We have applied all atoms discrete molecular dynamics (DMD) based on a quasi-physical potential to study the flexibility of an extended set of proteins for which atomistic MD simulations are available. The method uses pure physical potentials supplemented by information on secondary structure and despite its simplicity is able to reproduce with good accuracy the dynamics of proteins in solution. The method presents a clear improvement with respect to coarse-grained methods based on structure potentials and opens the possibility to explore dynamics of proteins out from the equilibrium and to trace conformational changes induced by interaction of proteins with both small and macromolecular ligands. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22563_sm_Suppinfo.doc511.5 KB | Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Ma J,Karplus M. The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc Natl Acad Sci USA 1998; 95: 8502–8507.
- 2 Daniel RM,Dumm RV,Finney JL,Smith CJ. The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 2003; 32: 69–92.
- 3 Eisenmesser EZ,Bosco DA,Akke MD,Kern D. Enzyme dynamics during catalysis. Science 2002; 295: 1520–1523.
- 4 Luo J,Bruice TC. Anticorrelated motions as a driving force in enzyme catalysis: the dehydrogenase reaction. Proc Natl Acad Sci USA 2004; 101: 13152–13156.
- 5
Hinsen K,Thomas A,Field MJ.
Analysis of domain motions in large proteins.
Proteins
1999;
34:
369–382.
10.1002/(SICI)1097-0134(19990215)34:3<369::AID-PROT9>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 6 Waldron TT,Murphy KP. Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics. Biochemistry 2003; 42: 5058–5064.
- 7 Yang L-W,Bahar I. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 2005; 13: 893–904.
- 8 Sacquin-Mora S,Lavery R. Investigating the local flexibility of functional residues in hemoproteins. Biophys J 2006; 90: 2706–2717.
- 9 Remy I,Wilson IA,Michnick SW. Erythropoietin receptor activation by a ligand-induced conformation change. Science 1999; 283: 990–993.
- 10 Henzler-Wildman KA,Ming L,Vu T,Kerns SJ,Karplus M,Kern D. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 2007; 450: 913–916.
- 11
Teague SJ.
Implications of protein flexibility for drug discovery.
Nat Rev Drug Discov
2008;
2:
527–541.
10.1038/nrd1129 Google Scholar
- 12 Marvin JS,Hellinga HW. Manipulation of ligand binding affinity by exploitation of conformational coupling. Nature Struct Biol 2001; 8: 795–798.
- 13 Falke JJ. A moving story. Science 2002; 295: 1480–1481.
- 14 Kenakin T. Agonist receptor efficacy 1: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol Sci 1995; 16: 188–192.
- 15 Ma B,Shatsky M,Wolfson HJ,Nussinov R. Multiple diverse ligands binding at single protein site: a matter of pre-existing populations. Protein Sci 2002; 11: 184–197.
- 16 Shoichet BK,Baase WA,Kuroki R,Matthews B. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 1995; 92: 452–456.
- 17 Karplus M,McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9: 646–652.
- 18 Karplus M,Kuriyan J. Molecular dynamics and protein function. Proc Natl Acad Sci USA 2005; 102: 6679–6685.
- 19 Karplus M,McCammon JA. The dynamics of proteins. Sci Am 1986; 254: 42–51.
- 20 McCammon JA,Gelin BR,Karplus M. Dynamics of folded proteins. Nature 1977; 267: 585–590.
- 21 Allen MP,Tildesley DJ. Computer simulation of liquids. Oxford: Clarendon Press; 1989.
- 22 Brooks CL,III,Karplus M,Pettitt BM. Proteins: A theoretical perspective of dynamics, structure and thermodynamics. Cambridge: Cambridge University Press, 1987.
- 23 Warshel A. Bicycle-pedal model for the first step in the vision process. Nature 1976; 260: 679–683.
- 24 Van Gunsteren WF,Karplus M. Protein dynamics in solution and in a crystalline environment: a molecular dynamics study. Biochemistry 1982; 21: 2259–2274.
- 25 Berendsen HJC,Postma JPM,Van Gunsteren WF,DiNola A,Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690.
- 26 Bahar I,Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 2005; 15: 586–592.
- 27 Rueda M,Chacon P,Orozco M. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure 2007; 15: 565–575.
- 28
McCammon JA,Harvey SC.
Dynamics of proteins and nucleic acids.
Cambridge:
Cambridge University Press,
1987.
10.1017/CBO9781139167864 Google Scholar
- 29 Karanicolas J,Brooks CL. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 2002; 11: 2351–2361.
- 30 Paci E,Vendruscolo M,Marplus M. Native and non-native interactions along protein folding and unfolding pathways. Proteins: Struct Funct Genet 2002; 47: 379–392.
- 31 Zarrine-Afsar A,Wallin S,Neculai AM,Neudekker P,Howell PL,Davidson AR,Cahn HS. Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding. Proc Natl Acad Sci USA 2008; 105: 9999–10004.
- 32 Alder BJ,Wainwright TE. Studies in molecular dynamics. I. General method. J Chem Phys 1959; 31: 459–466.
- 33 Smith WS,Hall CK,Freeman BD. Molecular dynamics for polymeric fluids using discontinuous potentials. J Comput Phys 1997; 134: 16–30.
- 34 Emperador A,Carrillo O,Rueda M,Orozco M. Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. Biophys J 2008; 95: 2127–2138.
- 35 Emperador A,Meyer T,Orozco M. United-atom discrete molecular dynamics of proteins using physics-based potentials. J Chem Theory Comput 2008; 4: 2001–2010.
- 36 Taketomi H,Ueda Y,Gō N. Studies of protein folding, unfolding and fluctuations by computer simulations. Int J Pept Protein Res 1975; 7: 445–459.
- 37 Ding F,Tsao D,Nie H,Dokholyan NV. Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 2008; 16: 1010–1018.
- 38 Ding F,Buldyrev SV,Dokholyan NV. Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys J 2005; 88: 147–155.
- 39 Zhou YQ,Karplus M. Interpreting the folding kinetics of helical proteins. Nature 1999; 401: 400–403.
- 40 Dokholyan NV,Buldyrev SV,Stanley HE,Shakhnovich EI. Discrete molecular dynamics studies of the folding of a protein-like model. Fold Des 1998; 3: 577–587.
- 41 Linhananta A,Zhou Y. The role of side chain packing and native contact interactions in folding: discontinuous molecular dynamics folding simulations of an all-atom Go model of fragment B of Staphylococcal protein A. J Chem Phys 2002; 117: 8983–8995.
- 42 Luo Z,Ding J,Zhou Y. Temperature-dependent folding pathways of pinl WW domain: an all-atom molecular dynamics simulation of a Go model. Biophys J 2007; 93: 2152–2161.
- 43 Zhou Y,Linhananta A. Role of hydrophilic and hydrophobic contacts in folding of the second b-hairpin fragment of protein G: molecular dynamics simulation studies of an all-atom model. Proteins: Struct Funct Genet 2002; 47: 154–162.
- 44 Ding F,Sharma S,Chalasani P,Demidov VV,Broude NE,Dokholyan NV. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 2008; 14: 1164–1173.
- 45 Sharma S,Ding F,Dokholyan NV. Multiscale modeling of nucleosome dynamics. Biophys J 2007; 92: 1457–1470.
- 46 Ding F,Dokholyan NV,Buldyrev SV,Stanley EH,Shakhnovich EI. Molecular dynamic simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. J Mol Biol 2002; 324: 851–857.
- 47 Chen Y,Dokholyan NV. A single disulfide bond differentiates aggregation pathways of β2-microglobulin. J Mol Biol 2005; 354: 473–482.
- 48 Ding F,LaRocque JJ,Dokholyan NV. Direct observation of protein folding, aggregation, and a prion-like conformational conversion. J Biol Chem 2005; 280: 40235–40240.
- 49 Khare SD,Ding F,Gwanmesia KM,Dokholyan NV. Molecular origin of polyglutamine-mediated protein aggregation in neurodegenerative diseases. PLoS Comput Biol 2005; 1: 230–235.
- 50 Marchut AJ,Hall CK. Side-chain interactions determine amyloid formation by model polyglutamine peptides in molecular dynamics simulations. Biophys J 2006; 90: 4574–4584.
- 51 Nguyen HD,Hall CK. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 2004; 101: 16180–16185.
- 52 Peng S,Ding F,Urbanc B,Buldyrev SV,Cruz L,Stanley HE,Dokholyan NV. Discrete molecular dynamics simulations of peptide aggregation. Phys Rev E 2004; 69: 041908.
- 53 Ding F,Borreguero JM,Buldyrey SV,Stanley HE,Dokholyan NV. Mechanism for the alpha-helix to beta-hairpin transition. Proteins: Struct Funct Genet 2003; 53: 220–228.
- 54 Urbanc B,Cruz L,Buldyrev SV,Bitan G,Teplow DB,Stanley HE. In silico study of amyloid beta protein folding and oligomerization. Proc Natl Acad Sci USA 2004; 101: 17345–17350.
- 55 Yun S,Urbanc B,Cruz L,Bitan G,Teplow DB,Stanley HE. Role of electrostatic interactions in amyloid beta-protein (ABeta) oligomer formation: a discrete molecular dynamics study. Biophys J 2007; 92: 4064–4077.
- 56 Borreguero JM,Urbanc B,Lazo ND,Buldyrev SV,Teplow DB,Stanley HE. Folding events in the 21-30 region of amyloid beta-protein (ABeta) studied in silico. Proc Natl Acad Sci USA 2005; 102: 6015–6020.
- 57
Lazaridis T,Karplus M.
Effective energy function for proteins in solution.
Proteins: Struct Funct Genet
1999;
35:
133–152.
10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 58 Rueda M,Ferrer-Costa C,Meyer T,Perez A,Camps J,Hospital A,Gelpi JL,Orozco M. A consensus view of protein dynamics. Proc Natl Acad Sci USA 2007; 104: 796–801.
- 59 Cornell WD,Cieplak P,Bayly CI,Gould IR,Merz KM,Ferguson DM,Spellmeyer DC,Fox T,Caldwell JW,Kollman P. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–5197.
- 60 MacKerell AD,Bashford D,Bellott M,Dunbrack RL,Evanseck JD,Field MJ,Fischer S,Gao J,Guo H,Ha S,Joseph-McCarthy D,Kuchnir L,Kuczera K,Lau FTK,Mattos C,Michnick S,Ngo T,Nguyen DT,Prodhom B,Reiher WE,Roux B,Schlenkrich M,Smith JC,Stote R,Straub J,Watanabe M,Wiorkiewicz-Kuczera J,Yin D,Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998; 102: 3586–3616.
- 61 MacKerell AD,Wiorkiewicz-Kuczera J,Jr,Karplus M. An all-atom empirical energy function for the simulation of nucleic acids. J Am Chem Soc 1995; 117: 11946–11975.
- 62 Damm W,Frontera A,Tirado-Rives J,Jorgensen WL. OPLS all-atom force field for carbohydrates. J Comput Chem 1997; 18: 1955–1970.
- 63 Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225–11236.
- 64 Kaminski G,Duffy EM,Matsui T,Jorgensen WL. Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 1994; 98: 13077–13082.
- 65 Kaminski GA,Friesner RA,Tirado-Rives J,Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001; 105: 6474–6487.
- 66 Darden TL,York D,Pedersen L. Particle Mesh Ewald: AN N-log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 67 Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1997; 23: 327–341.
- 68 Andersen HC. Rattle: a velocity version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 1983; 52: 24–34.
- 69 Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926–935.
- 70 Mahoney MW,Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 2000; 112: 8910–8922.
- 71 Case DA,Pearlman DA,Caldwell JW,Cheatham TE,Ross WS,Simmerling CL,Darden TL,Merz KM,Stanton RV,Cheng AL,Vincent JJ,Crowley M,Tsui V,Radmer RJ,Duan Y,Pitera J,Massova I,Seibel GL,Singh UC,Weiner PK,Kollman PA. AMBER8. San Francisco: University of California, 2004.
- 72 Kale L,Skeel R,Bhandarkar M,Brunner R,Gursoy A,Krawetz N,Phillips J,Shinozaki A,Varadarajan K,Schulten K. NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 1999; 151: 283–312.
- 73 Phillips JC,Braun R,Wang W,Gumbart J,Tajkhorshid E,Villa E,Chipot C,Skeel RD,Kale L,Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26: 1781–1802.
- 74 Zhang Y,Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302–2309.
- 75 Amadei A,Linssen AB,Berendsen HJ. Essential dynamics of proteins. Proteins 1993; 17: 412–425.
- 76 Hess B. Similarities between principal components of protein dynamics and random diffusion. Phys Rev E 2000; 62: 8438–8448.
- 77 Noy A,Meyer T,Rueda M,Ferrer C,Valencia A,Perez A,Orozco M,de la Cruz X,Luque FJ. Data mining of molecular dynamics trajectories of nucleic acids. J Biomol Struct Dyn 2006; 23: 357–484.
- 78 Orozco M,Perez A,Noy A,Luque FJ. Theoretical methods for the simulation of nucleic acids. Chem Soc Rev 2003; 32: 350–364.
- 79 Brüschweiler R. Collective protein dynamics and nuclear spin relaxation. J Chem Phys 1995; 102: 3396–3403.
- 80 Zhou Y,Vitkup D,Karplus M. Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state. J Mol Biol 1999; 285: 1371–1375.
- 81 Zhou Y,Karplus M. Folding thermodynamics of a model three-helix bundle protein. Proc Natl Acad Sci USA 1997; 94: 14429–14432.