Identification, analysis, and prediction of protein ubiquitination sites
Predrag Radivojac
School of Informatics, Indiana University, Bloomington, Indiana 47408
Search for more papers by this authorVladimir Vacic
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
Search for more papers by this authorChad Haynes
Laboratory of Statistical Genetics, The Rockefeller University, New York, New York 10065
Current address: StarMine Corporation, 199 Fremont Street, San Francisco, CA 94105
Search for more papers by this authorRoss R. Cocklin
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorAmrita Mohan
School of Informatics, Indiana University, Bloomington, Indiana 47408
Search for more papers by this authorJoshua W. Heyen
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorMark G. Goebl
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorCorresponding Author
Lilia M. Iakoucheva
Laboratory of Statistical Genetics, The Rockefeller University, New York, New York 10065
Laboratory of Statistical Genetics, The Rockefeller University, 1230 York Ave, Box 192, New York, NY 10065===Search for more papers by this authorPredrag Radivojac
School of Informatics, Indiana University, Bloomington, Indiana 47408
Search for more papers by this authorVladimir Vacic
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
Search for more papers by this authorChad Haynes
Laboratory of Statistical Genetics, The Rockefeller University, New York, New York 10065
Current address: StarMine Corporation, 199 Fremont Street, San Francisco, CA 94105
Search for more papers by this authorRoss R. Cocklin
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorAmrita Mohan
School of Informatics, Indiana University, Bloomington, Indiana 47408
Search for more papers by this authorJoshua W. Heyen
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorMark G. Goebl
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
Search for more papers by this authorCorresponding Author
Lilia M. Iakoucheva
Laboratory of Statistical Genetics, The Rockefeller University, New York, New York 10065
Laboratory of Statistical Genetics, The Rockefeller University, 1230 York Ave, Box 192, New York, NY 10065===Search for more papers by this authorAbstract
Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry, and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory, and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associatedmutations. UbPred is available at http://www.ubpred.org. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22555_sm_supptable1.pdf16.2 KB | Supporting Table 1. |
PROT_22555_sm_supptable2.pdf41.2 KB | Supporting Table 2. |
PROT_22555_sm_supptable3.pdf58.2 KB | Supporting Table 3. |
PROT_22555_sm_supptable4.pdf52 KB | Supporting Table 4. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001; 2: 195–201.
- 2 Pickart CM. Ubiquitin enters the new millennium. Mol Cell 2001; 8: 499–504.
- 3 Muratani M,Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4: 192–201.
- 4 Pornillos O,Garrus JE,Sundquist WI. Mechanisms of enveloped RNA virus budding. Trends Cell Biol 2002; 12: 569–579.
- 5 Terrell J,Shih S,Dunn R,Hicke L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1998; 1: 193–202.
- 6 Rome S,Meugnier E,Vidal H. The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Curr Opin Clin Nutr Metab Care 2004; 7: 249–254.
- 7 Izzi L,Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 2004; 23: 2071–2078.
- 8 Hershko A,Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.
- 9 Xu P,Duong DM,Seyfried NT,Cheng D,Xie Y,Robert J,Rush J,Hochstrasser M,Finley D,Peng J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137: 133–145.
- 10 Koegl M,Hoppe T,Schlenker S,Ulrich HD,Mayer TU,Jentsch S. A novel ubiquitination factor. E4, is involved in multiubiquitin chain assembly. Cell 1999; 96: 635–644.
- 11 Richly H,Rape M,Braun S,Rumpf S,Hoege C,Jentsch S. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 2005; 120: 73–84.
- 12 Hoeller D,Hecker CM,Wagner S,Rogov V,Dotsch V,Dikic I. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol Cell 2007; 26: 891–898.
- 13 Huang L,Kinnucan E,Wang G,Beaudenon S,Howley PM,Huibregtse JM,Pavletich NP. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 1999; 286: 1321–1326.
- 14 Zheng N,Schulman BA,Song L,Miller JJ,Jeffrey PD,Wang P,Chu C,Koepp DM,Elledge SJ,Pagano M,Conaway RC,Conaway JW,Harper JW,Pavletich NP. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002; 416: 703–709.
- 15 Wu G,Xu G,Schulman BA,Jeffrey PD,Harper JW,Pavletich NP. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003; 11: 1445–1456.
- 16 Orlicky S,Tang X,Willems A,Tyers M,Sicheri F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003; 112: 243–256.
- 17 Hao B,Zheng N,Schulman BA,Wu G,Miller JJ,Pagano M,Pavletich NP. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 2005; 20: 9–19.
- 18 Hao B,Oehlmann S,Sowa ME,Harper JW,Pavletich NP. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007; 26: 131–143.
- 19 Dunker AK,Lawson JD,Brown CJ,Williams RM,Romero P,Oh JS,Oldfield CJ,Campen AM,Ratliff CM,Hipps KW,Ausio J,Nissen MS,Reeves R,Kang C,Kissinger CR,Bailey RW,Griswold MD,Chiu W,Garner EC,Obradovic Z. Intrinsically disordered protein. J Mol Graph Model 2001; 19: 26–59.
- 20 Dunker AK,Brown CJ,Lawson JD,Iakoucheva LM,Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41: 6573–6582.
- 21 Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27: 527–533.
- 22
Uversky V,Gillespie J,Fink A.
Why are “natively unfolded” proteins unstructured under physiologic conditions?
Proteins
2000;
41:
415–427.
10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 23 Wright PE,Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293: 321–331.
- 24 Bourhis JM,Canard B,Longhi S. Predicting protein disorder and induced folding: from theoretical principles to practical applications. Curr Protein Pept Sci 2007; 8: 135–149.
- 25 Iakoucheva LM,Brown CJ,Lawson JD,Obradovic Z,Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 2002; 323: 573–584.
- 26 Uversky VN,Oldfield CJ,Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 2008; 37: 215–246.
- 27 Iakoucheva LM,Radivojac P,Brown CJ,O'Connor TR,Sikes JG,Obradovic Z,Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32: 1037–1049.
- 28 Xie H,Vucetic S,Iakoucheva LM,Oldfield CJ,Dunker AK,Obradovic Z,Uversky VN. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 2007; 6: 1917–1932.
- 29 Radivojac P,Iakoucheva LM,Oldfield CJ,Obradovic Z,Uversky VN,Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92: 1439–1456.
- 30 Prakash S,Tian L,Ratliff KS,Lehotzky RE,Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11: 830–837.
- 31 Singh GP,Ganapathi M,Sandhu KS,Dash D. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes. Proteins 2006; 62: 309–315.
- 32 Tompa P,Prilusky J,Silman I,Sussman JL. Structural disorder serves as a weak signal for intracellular protein degradation. Proteins 2008; 71: 903–909.
- 33 Gsponer J,Futschik ME,Teichmann SA,Babu MM. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 2008; 322: 1365–1368.
- 34 Tsvetkov P,Asher G,Paz A,Reuven N,Sussman JL,Silman I,Shaul Y. Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins 2008; 70: 1357–1366.
- 35 Hitchcock AL,Auld K,Gygi SP,Silver PA. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci USA 2003; 100: 12735–12740.
- 36 Peng J,Schwartz D,Elias JE,Thoreen CC,Cheng D,Marsischky G,Roelofs J,Finley D,Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotech 2003; 21: 921–926.
- 37 Wolters DA,Washburn MP,Yates JR,III. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 2001; 73: 5683–5690.
- 38 Yates JR,III,Eng JK,McCormack AL,Schieltz D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 1995; 67: 1426–1436.
- 39 Keller A,Nesvizhskii AI,Kolker E,Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002; 74: 5383–5392.
- 40 Arnold I,Langer T. Membrane protein degradation by AAA proteases in mitochondria. Biochim Biophys Acta 2002; 1592: 89–96.
- 41 Ashburner M,Ball CA,Blake JA,Botstein D,Butler H,Cherry JM,Davis AP,Dolinski K,Dwight SS,Eppig JT,Harris MA,Hill DP,Issel-Tarver L,Kasarskis A,Lewis S,Matese JC,Richardson JE,Ringwald M,Rubin GM,Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.
- 42 Rost B,Liu J,Nair R,Wrzeszczynski KO,Ofran Y. Automatic prediction of protein function. Cell Mol Life Sci 2003; 60: 2637–2650.
- 43 Gupta R,Kus B,Fladd C,Wasmuth J,Tonikian R,Sidhu S,Krogan NJ,Parkinson J,Rotin D. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 2007; 3: 116.
- 44 Belle A,Tanay A,Bitincka L,Shamir R,O'Shea EK. Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA 2006; 103: 13004–13009.
- 45 Daróczy Z. Generalized information functions. Inf Control 1970; 16: 36–51.
- 46 Vihinen M,Torkkila E,Riikonen P. Accuracy of protein flexibility predictions. Proteins 1994; 19: 141–149.
- 47 Radivojac P,Obradovic Z,Smith DK,Zhu G,Vucetic S,Brown CJ,Lawson JD,Dunker AK. Protein flexibility and intrinsic disorder. Protein Sci 2004; 13: 71–80.
- 48 Eisenberg D,Weiss RM,Terwilliger TC. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 1984; 81: 140–144.
- 49 Romero P,Obradovic Z,Li X,Garner EC,Brown CJ,Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42: 38–48.
- 50 Vucetic S,Brown CJ,Dunker AK,Obradovic Z. Flavors of protein disorder. Proteins 2003; 52: 573–584.
- 51 Obradovic Z,Peng K,Vucetic S,Radivojac P,Brown CJ,Dunker AK. Predicting intrinsic disorder from amino acid sequence. Proteins 2003; 53 ( Suppl 6): 566–572.
- 52 Peng K,Radivojac P,Vucetic S,Dunker AK,Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7: 208.
- 53 Altschul SF,Madden TL,Schaffer AA,Zhang J,Zhang Z,Miller W,Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402.
- 54 Breiman L. Random forests. Mach Learn 2001: 45: 5–32.
- 55 Saerens M,Latinne P,Decaestecker C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Comput 2002; 14: 21–41.
- 56 Benanti JA,Cheung SK,Brady MC,Toczyski DP. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 2007; 9: 1184–1191.
- 57 Liu Y,Mathias N,Steussy CN,Goebl MG. Intragenic suppression among CDC34 (UBC3) mutations defines a class of ubiquitin-conjugating catalytic domains. Mol Cell Biol 1995; 15: 5635–5644.
- 58 Petroski MD,Deshaies RJ. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2005; 123: 1107–1120.
- 59 Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235–242.
- 60 Sobolev V,Sorokine A,Prilusky J,Abola EE,Edelman M. Automated analysis of interatomic contacts in proteins. Bioinformatics 1999; 15: 327–332.
- 61 Dosztanyi Z,Magyar C,Tusnady G,Simon I. SCide: identification of stabilization centers in proteins. Bioinformatics 2003; 19: 899–900.
- 62 Rodriguez MS,Desterro JM,Lain S,Lane DP,Hay RT. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 2000; 20: 8458–8467.
- 63 Bell S,Klein C,Muller L,Hansen S,Buchner J. p53 contains large unstructured regions in its native state. J Mol Biol 2002; 322: 917–927.
- 64 Salghetti SE,Kim SY,Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.
- 65 McEwan IJ,Dahlman-Wright K,Ford J,Wright AP. Functional interaction of the c-Myc transactivation domain with the TATA binding protein: evidence for an induced fit model of transactivation domain folding. Biochemistry 1996; 35: 9584–9593.
- 66 Bohm L,Crane-Robinson C,Sautiere P. Proteolytic digestion studies of chromatin core-histone structure. Identification of a limit peptide of histone H2A. Eur J Biochem 1980; 106: 525–530.
- 67 Thorne AW,Sautiere P,Briand G,Crane-Robinson C. The structure of ubiquitinated histone H2B. EMBO J 1987; 6: 1005–1010.
- 68 Luger K,Mader AW,Richmond RK,Sargent DF,Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389: 251–260.
- 69 Weinreb PH,Zhen W,Poon AW,Conway KA,Lansbury PT,Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 1996; 35: 13709–13715.
- 70 Nonaka T,Iwatsubo T,Hasegawa M. Ubiquitination of alpha-synuclein. Biochemistry 2005; 44: 361–368.
- 71 Kriwacki RW,Hengst L,Tennant L,Reed SI,Wright PE. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 1996; 93: 11504–11509.
- 72 Flaugh SL,Lumb KJ. Effects of macromolecular crowding on the intrinscially disordered proteins c-Fos and p27(Kip 1). Biomacromolecules 2001; 2: 538–540.
- 73 Russo AA,Jeffrey PD,Patten AK,Massague J,Pavletich NP. Crystal structure of the p27(kip1) cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996; 382: 325–331.
- 74 Adkins JN,Lumb KJ. Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57(Kip2). Proteins 2002; 46: 1–7.
- 75 Cox CJ,Dutta K,Petri ET,Hwang WC,Lin Y,Pascal SM,Basavappa R. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett 2002; 527: 303–308.
- 76 King RW,Glotzer M,Kirschner MW. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell 1996; 7: 1343–1357.
- 77 Jaffray E,Wood KM,Hay RT. Domain organization of I kappa B alpha and sites of interaction with NF- kappa B p65. Mol Cell Biol 1995; 15: 2166–2172.
- 78 Scherer DC,Brockman JA,Chen Z,Maniatis T,Ballard DW. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA 1995; 92: 11259–11263.
- 79 Rice LM,Brennwald P,Brunger AT. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett 1997; 415: 49–55.
- 80 Bohm L,Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep 1984; 4: 365–386.
- 81 McNulty BC,Young GB,Pielak GJ. Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J Mol Biol 2006; 355: 893–897.
- 82 Vacic V,Iakoucheva LM,Radivojac P. Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006; 22: 1536–1537.
- 83 Uversky VN. What does it mean to be natively unfolded? Eur J Biochem 2002; 269: 2–12.
- 84 Patel MS,Korotchkina LG. Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp Mol Med 2001; 33: 191–197.
- 85 Minella O,Mulner-Lorillon O,Bec G,Cormier P,Belle R. Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1betagammadelta/ValRS) control the various functions of EF-1alpha. Biosci Rep 1998; 18: 119–127.
- 86 Hobohm U,Sander C. Enlarged representative set of protein structures. Protein Sci 1994; 3: 522–524.
- 87 Sandhu KS,Dash D. Conformational flexibility may explain multiple cellular roles of PEST motifs. Proteins 2006; 63: 727–732.
- 88 Thomas D,Tyers M. Transcriptional regulation: Kamikaze activators. Curr Biol 2000; 10: R341–R343.
- 89 Al-Fageeh M,Li Q,Mohaiza Dashwood W,Myzak MC,Dashwood RH. Phosphorylation and ubiquitination of oncogenic mutants of beta-catenin containing substitutions at Asp32. Oncogene 2004; 23: 4839–4846.
- 90 Ciechanover A,Schwartz AL. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 2004; 1695: 3–17.
- 91 Petroski MD. The ubiquitin system, disease, and drug discovery. BMC Biochem 2008; 9 ( Suppl 1): S7.
- 92 Nishioka M,Kohno T,Tani M,Yanaihara N,Tomizawa Y,Otsuka A,Sasaki S,Kobayashi K,Niki T,Maeshima A,Sekido Y,Minna JD,Sone S,Yokota J. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc Natl Acad Sci USA 2002; 99: 12269–12274.
- 93 Wang YH,Tsay YG,Tan BC,Lo WY,Lee SC. Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 2003; 278: 25568–25576.
- 94 Freiman RN,Tjian R. Regulating the regulators: lysine modifications make their mark. Cell 2003; 112: 11–17.
- 95 Brooks CL,Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003; 15: 164–171.
- 96 Catic A,Collins C,Church GM,Ploegh HL. Preferred in vivo ubiquitination sites. Bioinformatics 2004; 20: 3302–3307.
- 97 Gieffers C,Dube P,Harris JR,Stark H,Peters JM. Three-dimensional structure of the anaphase-promoting complex. Mol Cell 2001; 7: 907–913.
- 98 Tung CW,Ho SY. Computational identification of ubiquitylation sites from protein sequences. BMC Bioinformatics 2008; 9: 310.
- 99 Chernorudskiy AL,Garcia A,Eremin EV,Shorina AS,Kondratieva EV,Gainullin MR. UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics 2007; 8: 126.
- 100 Daily KM,Radivojac P,Dunker AK. Intrinsic disorder and protein modifications: Building an SVM predictor for methylation. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005, San Diego, CA, pp. 475–481.
- 101 Schwartz AL,Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 1999; 50: 57–74.