Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: Heme binding by an induced fit mechanism
Corresponding Author
David Cobessi
Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-Université Joseph Fourier, Grenoble 38027, France
Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-Université Joseph Fourier, Grenoble 38027, France===Search for more papers by this authorAhmed Meksem
Institut de recherche de l'Ecole de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch F-67412, France
Ahmed Meksem and Karl Brillet contributed equally to this work for the purification and crystallization of ShuA.
Search for more papers by this authorKarl Brillet
Institut de recherche de l'Ecole de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch F-67412, France
Ahmed Meksem and Karl Brillet contributed equally to this work for the purification and crystallization of ShuA.
Search for more papers by this authorCorresponding Author
David Cobessi
Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-Université Joseph Fourier, Grenoble 38027, France
Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-Université Joseph Fourier, Grenoble 38027, France===Search for more papers by this authorAhmed Meksem
Institut de recherche de l'Ecole de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch F-67412, France
Ahmed Meksem and Karl Brillet contributed equally to this work for the purification and crystallization of ShuA.
Search for more papers by this authorKarl Brillet
Institut de recherche de l'Ecole de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch F-67412, France
Ahmed Meksem and Karl Brillet contributed equally to this work for the purification and crystallization of ShuA.
Search for more papers by this authorAbstract
Shigella dysentriae and other Gram-negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB-dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C-terminal domain that folds into a 22-stranded transmembrane β-barrel, which is filled by the N-terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA-Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N-terminal TonB-box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB-box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB-box. Proteins 2010. © 2009 Wiley-Liss, Inc.
REFERENCES
- 1 Posey JE,Gherardini FC. Lack of a role for iron in the Lyme disease pathogen. Science 2000; 288: 1651–1653.
- 2 Stintzi A,Barnes C,Xu J,Raymond KN. Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci USA 2000; 97: 10691–10696.
- 3 Braun V,Killmann H. Bacterial solutions to the iron-supply problem. Trends Biochem Sci 1999; 24: 104–109.
- 4 Ferguson AD,Deisenhofer J. TonB-dependent receptors-structural perspectives. Biochim Biophys Acta 2002; 1565: 318–332.
- 5 Velayudhan J,Hughes NJ,Mccolm AA,Bagshaw J,Clayton CL,Andrews SC,Kelly DJ. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 2000; 37: 274–286.
- 6 Perkins-Balding D,Ratliff-Griffin M,Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68: 154–171.
- 7 Chen CJ,Sparling PF,Lewis LA,Dyer DW,Elkins C. Identification and purification of a hemoglobin-binding outer membrane protein from Neisseria gonorrhoeae. Infect Immun 1996; 64: 5008–5014.
- 8 Murphy ER,Sacco RE,Dickenson A,Metzger DJ,Hu Y,Orndorff PE,Connell TD. BhuR, a virulence-associated outer membrane protein of Bordetella avium, is required for the acquisition of iron from heme and hemoproteins. Infect Immun 2002; 70: 5390–5403.
- 9 Cescau S,Cwerman H,Létoffé S,Delepelaire P,Wandersman C,Biville F. Heme acquisition by hemophores. Biometals 2007; 20: 603–613.
- 10 Krieg S,Huché F,Diederichs K,Izadi-Pruneyre N,Lecroisey A,Wandersman C,Delepelaire P,Welte W. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci USA 2009; 106: 1045–1050.
- 11 Cherla RP,Lee SY,Tesh VL. Shiga toxins and apoptosis. FEMS Microbiol Lett 2003; 228: 159–166.
- 12 Sansonetti PJ. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol Rev 2001; 25: 3–14.
- 13 Law D. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol 2000; 88: 729–745.
- 14 Burkhard KA,Wilks A. Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae. Substrate specificity and identification of the heme protein ligands. J Biol Chem 2007; 282: 15126–15136.
- 15 Mills M,Payne SM. Identification of ShuA, the gene encoding the heme receptor of Shigella dysenteriae, and analysis of invasion and intracellular multiplication of a ShuA mutant. Infect Immun 1997; 65: 5358–5363.
- 16 Brillet K,Meksem A,Lauber E,Reimmann C,Cobessi D. Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis. Acta Crystallogr D 2009; 65: 326–331.
- 17
Brillet K,Meksem A,Thompson A,Cobessi D.
Expression, purification, crystallization and preliminary X-ray diffraction analysis of the TonB-dependent haem outer membrane transporter ShuA from Shigella dysenteriae.
Acta Crystallogr F
2009;
65:
402–405.
10.1107/S1744309109008148 Google Scholar
- 18 Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 1993; 26: 795–800.
- 19 Sheldrick GM. A short history of SHELX. Acta Crystallogr A 2008; 64112–64122.
- 20 Pape T,Schneider TR. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 2004; 37: 843–844.
- 21 De La Fortelle E,Bricogne G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 1997; 276: 472–494.
- 22 Abrahams JP,Leslie AGW. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D 1996; 52: 30–42.
- 23 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D 2004; 60: 2126–2132.
- 24 Brunger AT. Version 1.2 of the crystallography and NMR system. Nat Protoc 2002; 2: 2728–2733.
- 25 Murshudov GN,Vagin AA,Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 1997; 53: 240–255.
- 26 CCP4. Collaborative Computational Project, Number 4. Acta Crystallogr D 1994; 50: 760–763.
- 27 Laskowski RA,Macarthur MW,Moss DS,Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993; 26: 283–291.
- 28 Delano WL. The PyMOL molecular graphics system. Palo Alto, CA, USA: DeLano Scientific; 2002.
- 29 Brunger AT. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992; 355: 472–475.
- 30 Krissinel E,Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 2004; 60: 2256–2268.
- 31 Buchanan SK,Smith BS,Venkatramani L,Xia D,Esser L,Palnitkar M,Chakraborty R,Van Der Helm D,Deisenhofer J. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 1999; 6: 56–63.
- 32 Cobessi D,Celia H,Folschweiller N,Schalk IJ,Abdallah MA,Pattus F. The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J Mol Biol 2005; 347: 121–134.
- 33 Chimento DP,Mohanty AK,Kadner RJ,Wiener MC. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 2003; 10: 394–401.
- 34 Yue WW,Grizot S,Buchanan SK. Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 2003; 332: 353–368.
- 35 Chakraborty R,Storey E,Van Der Helm D. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 2007; 20: 263–274.
- 36 Bracken CS,Baer MT,Abdur_Rashid A,Helms W,Stojiljkovic I. Use of the heme-protein complexes by the Yersina enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol 1999; 181: 6063–6072.
- 37 Yonath A. Approaching atomic resolution in crystallography of ribosomes. Annu Rev Biophys Biomol Struct 1992; 21: 77–93.
- 38 Cobessi D,Celia H,Pattus F. Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 2005; 352: 893–904.
- 39 Buchanan SK,Lukacik P,Grizot S,Ghirlando R,Ali MM,Barnard TJ,Jakes KS,Kienker PK,Esser L. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO J 2007; 26: 2594–2604.
- 40 Annamalai R,Jin B,Cao Z,Newton SM,Klebba PE. Recognition of ferric catecholates by FepA. J Bacteriol 2004; 186: 3578–3589.
- 41 Pawelek PD,Croteau N,Ng-Thow-Hing C,Khursigara CM,Moiseeva N,Allaire M,Coulton JW. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 2006; 312: 1399–1402.
- 42 Shultis DD,Purdy MD,Banchs CN,Wiener MC. Outer membrane active transport: structure of the BtuB:TonB complex. Science 2006; 312: 1396–1399.
- 43 Fanucci GE,Coggshall KA,Cadieux N,Kim M,Kadner RJ,Cafiso DS. Substrate-induced conformational changes of the periplasmic N-terminus of an outer-membrane transporter by site-directed spin labeling. Biochemistry 2003; 42: 1391–1400.
- 44 Ferguson AD,Hofmann E,Coulton JW,Diederichs K,Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 1998; 282: 2215–2220.
- 45 Locher KP,Rees B,Koebnik R,Mitschler A,Moulinier L,Rosenbusch JP,Moras D. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Science 1998; 95: 771–778.
- 46 Ferguson AD,Chakraborty R,Smith BS,Esser L,Van Der Helm D,Deisenhofer J. Structural basis of gating by the outer membrane transporter FecA. Science 2002; 295: 1715–1719.
- 47 Wirth C,Meyer-Klaucke W,Pattus F,Cobessi D. From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor. J Mol Biol 2007; 368: 398–406.
- 48 Wyckoff EE,Duncan D,Torres AG,Mills M,Maase K,Payne SM. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 1998; 28: 1139–1152.
- 49 Gouet P,Courcelle E,Stuart DI,Metoz F. ESPript: multiple sequence alignments in postscript. Bioinformatics 1999; 15: 305–308.