Combining crystallography and molecular dynamics: The case of Schistosoma mansoni phospholipid glutathione peroxidase
Daniela Dimastrogiovanni
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorMassimiliano Anselmi
Dipartimento di Chimica, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorAdriana Erica Miele
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorGiovanna Boumis
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorLinn Petersson
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorFrancesco Angelucci
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorAlfredo Di Nola
Dipartimento di Chimica, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorMaurizio Brunori
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorCorresponding Author
Andrea Bellelli
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Dipartimento di Scienze Biochimiche, “Sapienza” University of Rome, piazzale Aldo Moro 5, Rome 00185, Italy===Search for more papers by this authorDaniela Dimastrogiovanni
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorMassimiliano Anselmi
Dipartimento di Chimica, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorAdriana Erica Miele
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorGiovanna Boumis
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorLinn Petersson
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorFrancesco Angelucci
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorAlfredo Di Nola
Dipartimento di Chimica, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorMaurizio Brunori
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Search for more papers by this authorCorresponding Author
Andrea Bellelli
Dipartimento di Scienze Biochimiche A. Rossi Fanelli and Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” University of Rome, Rome, Italy
Dipartimento di Scienze Biochimiche, “Sapienza” University of Rome, piazzale Aldo Moro 5, Rome 00185, Italy===Search for more papers by this authorAbstract
Oxidative stress is a widespread challenge for living organisms, and especially so for parasitic ones, given the fact that their hosts can produce reactive oxygen species (ROS) as a mechanism of defense. Thus, long lived parasites, such as the flatworm Schistosomes, have evolved refined enzymatic systems capable of detoxifying ROS. Among these, glutathione peroxidases (Gpx) are a family of sulfur or selenium-dependent isozymes sharing the ability to reduce peroxides using the reducing equivalents provided by glutathione or possibly small proteins such as thioredoxin. As for other frontline antioxidant enzymatic systems, Gpxs are localized in the tegument of the Schistosomes, the outermost defense layer. In this article, we present the first crystal structure at 1.0 and 1.7 Å resolution of two recombinant SmGpxs, carrying the active site mutations Sec43Cys and Sec43Ser, respectively. The structures confirm that this enzyme belongs to the monomeric class 4 (phospholipid hydroperoxide) Gpx. In the case of the Sec to Cys mutant, the catalytic Cys residue is oxidized to sulfonic acid. By combining static crystallography with molecular dynamics simulations, we obtained insight into the substrate binding sites and the conformational changes relevant to catalysis, proposing a role for the unusual reactivity of the catalytic residue. Proteins 2010. © 2009 Wiley-Liss, Inc.
REFERENCES
- 1 Margis R,Dunand C,Teixeira FK,Margis-Pinheiro M. Glutathione peroxidase family—an evolutionary overview. FEBS J 2008; 275: 3959–3970.
- 2 Arthur JR. The glutathione peroxidases. Cell Mol Life Sci 2000; 57: 1825–1835.
- 3 Herbette S,Roeckel-Drevet P,Drevet JR. Seleno-independent glutathione peroxidase. More than simple antioxidant scavengers. FEBS J 2007; 274: 2163–2180.
- 4 Papp LV,Lu J,Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 2007; 9: 775–806.
- 5 Squires JE,Berry MJ. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 2008; 60: 232–235.
- 6 Zuberbuehler CA,Messikommer RE,Arnold MM,Forrer RS,Wenk C. Effect of selenium depletion and selenium repletion by choice feeding on selenium status of young and old laying hens. Physiol Behav 2006; 87: 430–440.
- 7 Maiorino M,Aumann KD,Brigelius-Flohé R,Doria D,Van Den Heuvel J,Mccarthy J,Roveri A,Ursini F,Flohé L. Probing the presumed catalytic triad of a selenium-containing peroxidase by mutational analysis. Z Ernahrungswiss 1998; 37: 118–121.
- 8 Holben DH,Smith AM. The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 1999; 99: 836–843.
- 9 Su D,Novoselov SV,Sun Qi-An,Moustafa ME,Zhou Y,Oko R,Hatfield DL,Gladyshev VN. Mammalian selenoproteins thioredoxin-glutathione reductase. J Biol Chem 2005; 280: 26491–26498.
- 10 Epp O,Ladenstein R,Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 1983; 133: 51–69.
- 11 Chu FF,Doroshow JH,Esworthy RS. Expression, characterization and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 1993; 268: 2571–2576.
- 12 Ren B,Huang W,Akesson B,Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol 1997; 268: 869–885.
- 13 Maiorino M,Roche C,Kiess M,Gawlik D,Matthes M,Naldini E,Pierce R,Flohè L. A selenium containing phospholipid-hydroperoxide glutathione peroxidase in Schistosoma mansoni. Eur J Biochem 1996; 238: 838–844.
- 14 Tosatto SC,Bosello V,Federico F,Mauri P,Roveri A,Toppo S,Flohé L,Ursini F,Maiorino M. The catalytic site of glutathione peroxidase. Antiox Redox Signal 2008; 10: 1515–1525.
- 15 Wang Z,Wang F,Duan R,Liu JY. Purification and physicochemical characterization of a recombinant phospholipid hydroperoxide glutathione peroxidase from Oriza sativa. J Biochem Mol Biol 2007; 40: 412–418.
- 16 Conrad M,Schneider M,Seiler A,Bornkamm GW. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem 2007; 388: 1019–1025.
- 17 Nomura K,Imai H,Koumura T,Arai M,Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 1999; 274: 29294–29302.
- 18 Ursini F,Heim S,Kiess M,Maiorino M,Roveri A,Wissing J,Flohè L. Dual function of the selenoprotein PhGpx during sperm maturation. Science 1999; 285: 1393–1396.
- 19 Schnurr K,Belkner J,Ursini F,Schewe T,Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem 1996; 271: 4653–4658.
- 20 Scheerer P,Borchert A,Krauss N,Wessner H,Gerth C,Höhne W,Kuhn H. Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry 2007; 46: 9041–9049.
- 21 Johansson C,Kavanagh KL,Rojkova A,Gileadi O,Von Delft F,Arrowsmith C,Weigelt J,Sundstrom M,Edwards A,Oppermann U. Structural genomics consortium (SGC). Crystal structure of the selenocysteine to glycine mutant of human glutathione peroxidase 4(GPX4) in press.
- 22 Savioli L,Renganathan E,Montresor A,Davis A,Behbehani K. Control of schistosomiasis—a global picture. Parasitol Today 1997; 13: 444–448.
- 23 Angelucci F,Basso A,Bellelli A,Brunori M,Pica Mattoccia L,Valle C. The antischistosomal drug praziquantel is an adenosine antagonist. Parasitology 2007; 134: 1215–1221.
- 24 Zelck UE,Janowsky B. Antioxidant enzymes in intramolluscan Schistosoma mansoni and ROS-induced changes in expression. Parasitology 2004; 128: 493–501.
- 25 Salinas G,Selkirk ME,Chalar C,Maizels RM,Fernàndez C. Linked thioredoxin-glutathione systems in platyhelminths. Trends Parasitol 2004; 20: 340–346.
- 26 Angelucci F,Miele AE,Boumis G,Dimastrogiovanni D,Brunori M,Bellelli A. Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase. Proteins 2008; 72: 936–945.
- 27 Jaeger T,Flohé L. The thiol-based redox networks of pathogens: unexploited targets in the search for new drugs. Biofactors 2006; 27: 109–120.
- 28 Sayed AA,Cook SK,Williams DL. Redox balance mechanism in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 2006; 281: 17001–17010.
- 29 Roche C,Williams DL,Khalife J,Lepresle T,Capron A,Pierce RJ. Cloning and characterization of the gene encoding Schistosoma mansoni glutathione peroxidase. Gene 1994; 138: 149–152.
- 30
Williams DL,Pierce RJ,Cookson E,Capron A.
Molecular cloning and sequencing of glutathione peroxidase from Schistosoma mansoni.
Mol Biochem Parasitol
1992;
52:
127–130.
10.1016/0166-6851(92)90042-I Google Scholar
- 31 Mei H,Loverde PT. Schistosoma mansoni: cloning the gene encoding glutathione peroxidase. Exp Parasitol 1995; 80: 319–322.
- 32 Mei H,Thakur A,Schwartz J,Lo Verde PT. Expression and characterization of glutathione peroxidase activity in the human blood fluke Schistosoma mansoni. Infect Immun 1996; 64: 4299–4306.
- 33 Salisbury FR,Knutson ST,Poole LB,Fetrow JS. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid protein. Protein Sci 2008; 17: 299–312.
- 34 Collaborative Computational Project, Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr Sect D 1994; 57: 1373–1382.
- 35 Emsley P,Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 2004; 60: 2126–2132.
- 36 Potterton L,Mcnicholas S,Krissinel E,Gruber J,Cowtan K,Emsley P,Murshudov GN,Cohen S,Perrakis A,Noble M. Development in the CCP4 molecular-graphics project. Acta Crystallogr Sect D 2004; 60: 2288–2294.
- 37 Davis IW,Leaver-Fay A,Chen VB,Block JN,Kapral GJ,Wang X,Murray LW,Arendall WB,Snoeyink J,Richardson JS,Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35: W375–W383.
- 38 Laskowski RA,Macarthur MW,Moss DS,Thornton JM. Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993; 26: 283–291.
- 39 Larkin MA,Blackshields G,Brown NP,Chenna R,Mcgettigan PA,Mcwilliam H,Valentin F,Wallace IM,Wilm A,Lopez R,Thompson JD,Gibson TJ,Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947–2948.
- 40 Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648–5652.
- 41 Lee C,Yang W,Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter 1988; 37: 785–789.
- 42 Schaefer A,Horn H,Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms lithium to krypton. J Chem Phys 1992; 97: 2571–2577.
- 43 Schmidt MW,Baldridge KK,Boatz JA,Elbert ST,Gordon MS,Jensen JH,Koseki S,Matsunaga N,Nguyen KA,Su S,Windus TL,Dupuis M,Montgomery JA,Jr. General atomic and molecular electronic structure system. J Comput Chem 1993; 14: 1347–1363.
- 44 Breneman CM,Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 1990; 11: 361–373.
- 45
Allinger NL,Allinger JA,Yan LQ.
Molecular mechanics (MM2) calculations on organo selenium and tellurium compounds.
J Mol Struct
1989;
201:
363–369.
10.1016/0166-1280(89)87088-5 Google Scholar
- 46
Berendsen HJC,Postma JPM,Van Gunsteren WF,Hermans J.
Interaction models for water in relation to protein hydration. In:
B Pullman, editor.
Intermolecular forces.
Dordrecht, The Netherlands:
D Reidel Publishing Company;
1981. pp
331–342.
10.1007/978-94-015-7658-1_21 Google Scholar
- 47 Berendsen HJC,Van Der Spoel D,Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995; 91: 43–56.
- 48 Van Gunsteren WF,Billeter S,Eising A,Hunenberger P,Kruger P,Mark AE,Scott WRP,Tironi IG. Biomolecular simulations: the GROMOS96 manual and user guide. Zurich, Groningen: BIOMOS b.v; 1996.
- 49 Hess B,Bekker H,Berendsen HJC,Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997; 18: 1463–1472.
- 50 Amadei A,Chillemi G,Ceruso MA,Grottesi A,Di Nola A. Molecular dynamics simulations with constrained roto-translational motions: theoretical basis and statistical mechanical consistency. JChem Phys 2000; 112: 9–23.
- 51
Evans DJ,Morriss GP.
Statistical mechanics of nonequilibrium liquids.
London:
Academic Press;
1990.
10.1016/B978-0-12-244090-8.50009-6 Google Scholar
- 52 Essmann U,Perera L,Berkowitz ML,Darden T,Lee H,Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577–8593.
- 53 Amadei A,Linssen AB,Berendsen HJ. Essential dynamics of proteins. Proteins 1993; 17: 412–425.
- 54 Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 1995; 13: 323–330.
- 55 Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33: W363–W367.
- 56 Toppo S,Vanin S,Bosello V,Tosatto SCE. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Signal 2008; 10: 1515–1526.
- 57 Martin JL. Thioredoxin: a fold for all reasons. Structure 1995; 3: 245–250.
- 58 Lo Verde PT,Carvalho-Queiroz C,Cook R. Vaccination with antioxidant enzymes confers protective immunity against challenge infection with Schistosoma mansoni. Mem Inst Oswaldo Cruz 2004; 99: 37–43.
- 59 Thomas JP,Maiorino M,Ursini F,Girotti AW. Protective action of PhGPX against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 1990; 265: 454–461.
- 60 Brouwers J,Smeeck I,Van Golde L,Tielens A. The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni. Mol Biochem Parasitol 1997; 88: 175–185.
- 61 Prabhakar R,Vreven T,Morokuma K,Musaev DG. Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 2005; 44: 11864–11871.
- 62 Porter NA,Caldwell SE,Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995; 30: 277–290.
- 63 Mei H,Lo Verde P. Schistosoma mansoni: the developmental regulation and immunolocalization of antioxidant enzymes. Exp Parasitol 1997; 86: 69–78.
- 64 Khan A. A liquid water model: density variation from supercooled to superheated states, prediction of H-bonds, and temperature limits. J Phys Chem 2000; 104: 11268–11274.