Kinetic and binding effects in peptide substrate selectivity of matrix metalloproteinase-2: Molecular dynamics and QM/MM calculations†
Corresponding Author
Natalia Díaz
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo (Asturias), Spain===Search for more papers by this authorDimas Suárez
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Search for more papers by this authorErnesto Suárez
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Search for more papers by this authorCorresponding Author
Natalia Díaz
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo (Asturias), Spain===Search for more papers by this authorDimas Suárez
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Search for more papers by this authorErnesto Suárez
Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
Search for more papers by this authorThe authors state no conflict of interest.
Abstract
Herein, we examine computationally the binding and hydrolysis reaction of the MMP-2 enzyme with two peptide substrates selected by the enzyme from a phage peptide library. Molecular dynamics simulations of the Michaelis complexes (25 ns) allow us to characterize the main enzyme/substrate contacts. Subsequently MM-PBSA calculations using independent trajectories for the complexes and the free substrates provide relative binding energies in good agreement with the experimental KM results. Computational alanine scanning analyses of the enzyme/substrate interaction energies confirm the relevance of the P3, P2, and P1′ side chains for ligand binding. Finally, the hydrolysis of both peptides taking place at the MMP-2 active site is explored by means of hybrid quantum mechanical/molecular mechanics calculations. The computed reaction mechanisms result in rate-determining energy barriers being in consonance with the experimental kcat values. Overall, the computational protocol seems to capture the subtle differences in binding and catalysis experimentally observed for the two peptide substrates. Some implications of our results for the future design of novel and more specific MMP-2 inhibitors are also discussed. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22493_sm_suppinfo.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Sternlicht MD,Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516.
- 2 McCawley LJ,Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 2001; 13: 534–540.
- 3 Cuniasse P,Devel L,Makaritis A,Beau F,Georgiadis D,Matziari M,Yiotakis A,Dive V. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005; 87: 393–402.
- 4 Rao BG. Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 2005; 11: 295–322.
- 5 Nuti E,Tuccinardi T,Rossello A. Matrix metalloproteinase inhibitors: new challenges in the era of post broad-spectrum inhibitors. Curr Pharm Des 2007; 13: 2087–2100.
- 6 Overall CM,Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6: 227–239.
- 7 Overall CM,Kleifeld O. Towards third generation matrix matelloproteinase inhibitors for cancer therapy. Brit J Cancer 2006; 94: 941–946.
- 8 Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005; 87: 249–263.
- 9 Netzel-Arnett S,Sang Q-X,Moore WGI,Navre M,Birkedal-Hansen H,Van Wart HE. Comparative sequences specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 1993; 32: 6427–6432.
- 10 Smith MM,Shi L,Navre M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J Biol Chem 1995; 270: 6440–6449.
- 11 Turk BE,Huang LL,Piro ET,Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotech 2001; 19: 661–667.
- 12 Kridel SJ,Chen E,Kotra LP,Howard EW,Mobashery S,Smith JW. Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 2001; 276: 20572–20578.
- 13 Chen EI,Kridel SJ,Howard EW,Li W,Godzik A,Smith JW. A unique substrate recongition profile for matrix metalloproteinase-2. J Biol Chem 2002; 277: 4485–4491.
- 14 Chen EI,Li W,Godzik A,Howard EW,Smith JW. A residue in the S2 subsite controls substrate selectivity of matrix metalloproteinase-2 and matrix metalloproteinase-9. J Biol Chem 2003; 278: 17158–17163.
- 15 Díaz N,Suárez D,Sordo TL. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases. J Phys Chem B 2006; 110: 24222–24230.
- 16 Díaz N,Suárez D. Molecular dynamics simulations of matrix metalloproteinase 2: the role of the structural metal ions. Biochemistry 2007; 46: 8943–8952.
- 17 Díaz N,Suárez D. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate. Proteins: Struct Funct Bioinf 2008; 72: 50–61.
- 18 Case DA,Darden TA,Cheatham ITE,Simmerling CL,Wang J,Duke RE,Luo R,Merz KM,Pearlman DA,Crowley M,Walker RC,Zhang W,Wang B,Hayik S,Roitberg A,Seabra G,Wong KF,Paesani F,Wu X,Brozell S,Tsui V,Gohlke H,Yang L,Tan C,Mongan J,Hornak V,Cui G,Beroza P,Mathews DH,Schafmeister C,Ross WS,Kollman PA. AMBER 9. San Francisco: University of California; 2006.
- 19 Kolossváry I,Guida WC. Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides J Am Chem Soc 1996; 118: 5011–5019.
- 20 Kollman PA,Massova I,Reyes C,Kuhn B,Huo S,Chong L,Lee M,Lee T,Duan Y,Wang W,Donini O,Cieplak P,Srinivasan J,Case DA,Cheatham TE. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000; 33: 889–897.
- 21 Cornell WD,Cieplak P,Bayly CI,Gould IR,Merz KM,Jr,Ferguson DM,Spellmeyer DC,Fox T,Caldwell JW,Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–5197.
- 22 Aqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 1990; 94: 8021–8024.
- 23 Feig M, Karanicolas J, Brooks CL. MMTSB tool set: Enhanced sampling and multiscale modelling methods for applications in structural biology. J Mol Graph Model 2004; 22: 377–395.
- 24 Gohlke H,Case DA. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 2003; 25: 238–250.
- 25 Huo S,Massova I,Kollman PA. Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J Comput Chem 2002; 23: 15–27.
- 26 Massova I,Kollman PA. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133–8143.
- 27 Macke T,Case DA. Modeling unusual nucleic acid structures. In: NB Leontes, JJ SantaLucia, editors. Molecular modeling of nucleic acids. Washington, DC: American Chemical Society; 1998. pp 379–393.
- 28 Karplus M,Ichiye T,Pettit BM. Configurational entropy of native proteins. Biophys J 1987; 52: 1083–1085.
- 29 Matsuda H. Physical nature of higher-order mutual information: intrinsic correlations and frustration. Phys Rev E 2000; 62: 3098–3102.
- 30 Suárez E,Díaz N,Suárez D. Entropic control of the relative stability of triple-helical collagen peptide models. J Phys Chem B 2008; 112: 15248–15255.
- 31 QSite, version 4.0, Schrödinger, LLC, New York, NY, 2005.
- 32 Morgunova E,Tuuttila A,Bergmann U,Isupov M,Lindqvist Y,Schneider G,Tryggvason K. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 1999; 284: 1667–1670.
- 33
Becke AD.
Exchange-correlation approximation in density-functional theory. In:
DR Yarkony, editor.
Modern electronic structure theory part II.
Singapore:
World Scientific;
1995.
10.1142/9789812832115_0004 Google Scholar
- 34 Kaminski GA,Friesner RA,Tirado-Rives J,Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001; 105: 6474–6487.
- 35 Murphy RB,Philipp DM,Friesner RA. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Comput Chem 2000; 21: 1442–1457.
- 36 Rocchia W,Alexov E,Honig B. Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 2001; 105: 6507–6514.
- 37 Daura X. Molecular dynamics simulation of peptide folding. Theor Chem Acta 2006; 116: 297–306.
- 38 Díaz N,Suárez D. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study. J Phys Chem B 2008; 112: 8412–8424.