Sensitive Leptospira DNA detection using tapered optical fiber sensor
Nurul H. Zainuddin
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorHui Y. Chee
Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorMuhammad Z. Ahmad
Biotechnology and Nanotechnology Research Center, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
Search for more papers by this authorMohd A. Mahdi
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorMuhammad H. Abu Bakar
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Mohd H. Yaacob
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Correspondence
Mohd H. Yaacob, Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorNurul H. Zainuddin
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorHui Y. Chee
Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorMuhammad Z. Ahmad
Biotechnology and Nanotechnology Research Center, Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
Search for more papers by this authorMohd A. Mahdi
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorMuhammad H. Abu Bakar
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Mohd H. Yaacob
Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Wireless and Photonic Networks Research Centre (WiPNET), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
Correspondence
Mohd H. Yaacob, Department of Computer and Communication Systems, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorAbstract
This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
Supporting Information
Filename | Description |
---|---|
jbio201700363-sup-0001-author-biographies.docxapplication/docx, 598.4 KB | Author Biographies |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1A. I. Ko, C. Goarant, M. Picardeau, Nat. Rev. Microbiol. 2009, 7(10), 736.
- 2D. A. Haake, P. N. Levett, in Leptospira and Leptospirosis, Vol. 387 (Ed: B. Adler), Springer, Berlin 2015.
10.1007/978-3-662-45059-8_5 Google Scholar
- 3B. Abela-Ridder, R. Sikkema, R. A. Hartskeerl, Int. J. Antimicrob. Agents 2010, 36, S5.
- 4B. Adler, A. de la Peña Moctezuma, Vet. Microbiol. 2010, 140(3–4), 287.
- 5S. Thayaparan, I. D. Robertson, A. Fairuz, L. Suut, M. T. Abdullah, Malays. J. Pathol. 2013, 35(2), 123.
- 6C. H. Chang, M. Riazi, M. H. Yunus, S. Osman, R. Noordin, Diagn. Microbiol. Infect. Dis. 2014, 80(4), 278.
- 7I. Shah, Pediatr. Infect. Dis. 2012, 4(1), 4.
- 8S. V. Budihal, K. Perwez, J. Clin, Diagn. Res. 2014, 8(1), 199.
- 9M. Picardeau, E. Bertherat, M. Jancloes, A. N. Skouloudis, K. Durski, R. A. Hartskeerl, Diagn. Microbiol. Infect. Dis. 2014, 78, 1.
- 10F. R. R. Teles, L. P. Fonseca, Talanta 2008, 77, 606.
- 11M. Barozzi, A. Manicardi, A. Vannucci, A. Candiani, M. Sozzi, M. Konstantaki, S. Pissadakis, R. Corradini, S. Selleri, A. Cucinotta, J. Lightwave Technol. 2017, 35(16), 3461.
- 12Y. Yan, S. Ding, D. Zhao, R. Yuan, Y. Zhang, W. Cheng, Sci. Rep. 2016, 6, 1.
- 13J. T. Gerig, Introductory Organic Chemistry, Elsevier: Amsterdam, 2012.
- 14K. l. Skold, M. Svensson, G. Palmers, P. E. Andrén, United States Patent, US8663959B2, 2014.
- 15C. Cenciarini-borde, S. Courtois, B. La Scola, Future Microbiol. 2009, 4(1), 45.
- 16Z. Lewandowski, H. Beyenal, Fundamentals of Biofilm Research, CRC Press, Boca Raton, FL 2014.
- 17G. Wandemur, D. Rodrigues, R. Allil, V. Queiroz, R. Peixoto, M. Werneck, M. Miguel, Biosens. Bioelectron. 2014, 54, 661.
- 18Z. Jennifer Guo, C. Boyter, G. Cohoon, E. Salik, W. Lin, GSTF J. Bioinform. Biotechnol. 2011, 1(1), 36.
- 19L. Chen, C. Liu, M. D. Hughes, D. A. Nagel, A. V. Hine, L. Zhang, J. Biosens. Bioelectron. 2015, 6(2), 1.
- 20Z. B. Bahşi, A. Büyükaksoy, S. M. Ölmezcan, F. Şimşek, M. H. Aslan, A. Y. Oral, Sensors 2009, 9(6), 4890.
- 21T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, D. F. Murphy, Opt. Express 2012, 20(13), 13996.
- 22H. Latifi, M. I. Zibaii, S. M. Hosseini, P. Jorge, Photonic. Sens. 2012, 2(4), 340.
- 23M. Pospíšilová, G. Kuncová, J. Trögl, Sensors 2015, 15(10), 25208.
- 24G. Y. Chen, M. Ding, T. P. Newson, G. Brambilla, Open Opt. J. 2013, 7, 32.
- 25P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, G. Farrell, IEEE Sens. J. 2013, 13(1), 180.
- 26S. Mas, J. Martí, D. Monzón-Hernández, J. Palací, Opt. Commun. 2016, 361, 99.
- 27J. Kou, J. Feng, Q. Wang, F. Xu, Y. Lu, Opt. Lett. 2010, 35(13), 2308.
- 28J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, D. Liu, Opt. Lett. 2012, 37(1), 67.
- 29P. Lu, J. Harris, X. Wang, G. Lin, L. Chen, X. Bao, Appl. Optics 2012, 51(30), 7368.
- 30J. Musayev, Y. Adlgüzel, H. Külah, S. Eminoglu, T. Akln, IEEE Sens. J. 2014, 14(5), 1608.
- 31M. R. K. Soltanian, A. S. Sharbirin, M. M. Ariannejad, I. S. Amiri, R. M. De La Rue, G. Brambilla, B. M. A. Rahman, K. T. V. Grattan, H. Ahmad, IEEE Sens. J. 2016, 16(15), 5987.
- 32H. S. Haddock, P. M. Shankar, R. Mutharasan, Sens. Actuators B 2003, 88(1), 67.
- 33Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, Sensors 2011, 11(4), 3780.
- 34G. J. Wang, Z. Bin Wang, Appl. Mech. Mater. 2014, 687–691, 3403.
- 35T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, M. A. Mahdi, Opt. Express 2014, 22(19), 22802.
- 36D. Liu, A. K. Mallik, J. Yuan, C. Yu, G. Farrel, Y. Semenova, Q. Wu, Opt. Lett. 2015, 40(17), 4166.
- 37S. C. Warren-Smith, T. M. Monro, Opt. Express 2014, 22(2), 1480.
- 38Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, Opt. Lett. 2011, 36, 3115(16), 3117.
- 39A. Candiani, M. Sozzi, A. Cucinotta, S. Selleri, R. Veneziano, R. Corradini, R. Marchelli, P. Childs, S. Pissadakis, IEEE J. Sel. Top. Quantum Electron. 2012, 18(3), 1176.
- 40Y. Huang, B. Yu, T. Guo, B. Guan, RSC Adv. 2017, 7(22), 13177.
- 41S. Pilevar, C. C. Davis, F. Portugal, Anal. Chem. 1998, 70(10), 2031.
- 42Y. Mustapha Kamil, M. H. Abu Bakar, M. A. Mustapa, M. H. Yaacob, N. H. Z. Abidin, A. Syahir, H. J. Lee, M. A. Mahdi, Sens. Actuators B 2008, 257, 820.
- 43T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, T. M. Monro, Opt. Express 2015, 23(13), 17067.
- 44A. François, N. Riesen, H. Ji, S. V. Afshar, T. M. Monro, Appl. Phys. Lett. 2015, 106(3), 31104.
- 45Y. Mustapha Kamil, M. H. Abu Bakar, M. A. Mustapa, M. H. Yaacob, A. Syahir, M. A. Mahdi, IEEE Photonics J. 2015, 7(6), 3700109.
- 46M. D. Sonawane, S. B. Nimse, J. Chem. 2016, 2016, 1.
- 47Y. Maruyama, S. Terao, K. Sawada, Biosens. Bioelectron. 2009, 24(10), 3108.
- 48E. Özkumur, S. Ahn, A. Yalcın, C. A. Lopez, E. Cevik, R. J. Irani, C. DeLisi, M. Chiari, M. Selim Ünlü, Biosens. Bioelectron. 2010, 25(7), 1789.
- 49Q. Wang, B. Zhang, X. Lin, W. Weng, Sens. Actuators B 2011, 156(2), 599.
- 50Z. Qiang, L. Junyang, Y. Yanling, G. Libo, X. Chenyang, Optik 2014, 125, 4614.
- 51D. Sun, Y. Ran, G. Wang, Sensors 2017, 17(2559), 1.
- 52S. Pal, M. J. Kim, J. M. Song, Lab. Chip 2008, 8, 1332.
- 53Z. Zhang, F. Hua, T. Liu, Y. Zhao, J. Li, R. Yang, C. Yang, L. Zhou, PLoS One 2014, 9(5), 1.
- 54A. J. S. Ribeiro, K. Zaleta-rivera, E. A. Ashley, B. L. Pruitt, ACS Appl. Mater. Interfaces 2014, 6, 15516.
- 55H. H. Lin, I. Wang, P. Yen, H. Cheng, H. Tsai, H. Liao, S. Lu, F. Chou, C. Lin, Procedia Eng. 2014, 87, 340.
- 56W. Lai, C. Lin, Y. Yang, M. S. C. Lu, Biosens. Bioelectron. 2012, 35(1), 456.
- 57M. Chuang, C. Liu, M. Yang, Sens. Actuators B 2006, 114(1), 357.
- 58P. Sonthayanon, W. Chierakul, V. Wuthiekanun, J. Thaipadungpanit, T. Kalambaheti, S. Boonsilp, P. Amornchai, L. D. Smythe, D. Limmathurotsakul, N. P. Day, S. J. Peacock, Am. J. Trop. Med. Hyg. 2011, 84(4), 614.
- 59M. Kaisti, A. Kerko, E. Aarikka, P. Saviranta, Z. Boeva, T. Soukka, A. Lehmusvuori, Sci. Rep. 2017, 7(1), 1.
- 60A. Karimizefreh, P. Sasanpour, E. Jokar, R. Mohammadpour, M. Vaezjalali, T. Tekieh, IEEE Int. Sci. Conf. Electron. Nanotechnol. 2014, 34, 368.
- 61N. Oliveira, E. Souza, D. Ferreira, D. Zanforlin, W. Bezerra, M. Amélia Borb, M. Arruda, K. Lopes, G. Nascimento, D. Martins, M. Cordeiro, J. Lima-Filho, Sensors 2015, 15(7), 15562.
- 62X. Wang, H. J. Lim, A. Son, Environ. Health Toxicol. 2014, 29, 1.
10.5620/eht.2014.29.e2014007 Google Scholar
- 63D. S. Campos-Ferreira, E. V. M. Souza, G. A. Nascimento, D. M. L. Zanforlin, M. S. Arruda, M. F. S. Beltrao, A. L. Melo, D. Bruneska, J. L. Lima-Filho, Arabian J. Chem. 2016, 9(3), 443.
- 64C. Ignac, DNA Engineered Noble Metal Nanoparticles, Wiley-Scrivener: Beverly, MA, 2015.
- 65R. Sinden, DNA Structure and Function, Elsevier: Amsterdam, 2012.
- 66T. Martan, J. Kanka, I. Kasik, V. Matejec, Int. J. Optomech. 2009, 3(3), 233.
- 67M. Ahmad, L. L. Hench, Biosens. Bioelectron. 2005, 20(7), 1312.
- 68M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, M. H. Ghezelayagh, Meas. Sci. Technol. 2010, 21(10), 1.
- 69T. K. Yadav, M. A. Mustapa, M. H. Abu Bakar, M. A. Mahdi, J. Europ. Opt. Soc. Rap. Public. 2014, 9(14024), 1.
- 70R. M. Pasternack, S. R. Amy, Y. J. Chabal, Langmuir 2008, 24(9), 12963.
- 71I. Migneault, C. Dartiguenave, M. J. Bertrand, K. C. Waldron, Biotechniques 2004, 37(5), 790.
- 72X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn, Magn. Mater. 2004, 270, 1.
- 73S. Wickramaratne, S. Mukherjee, P. W. Villalta, O. D. Scharer, N. Y. Tretyakova, Bioconjug. Chem. 2013, 24, 1496.
- 74A. Urrutia, J. Goicoechea, F. J. Arregui, J. Sens. 2015, 2015, 1.
- 75C. Lee, W. Shih, J. Hsu, J. Horng, Opt. Express 2014, 22(20), 24646.
- 76S. Sudheer, Doctor of Philosophy, Duke University, Durham, NC 2007.
- 77S. C. Presnell, in The Molecular Basis of Human Cancer, edited by W. B. Coleman and G. J. Tsongalis (Springer Science+Business Media, New York, 2002, Ch. 2).
- 78M. Yin, C. Wu, L. Shao, W. K. E. Chan, A. P. Zhang, C. Lu, H. Tam, Analyst 2013, 138, 1988.
- 79S. Gao, L. Sun, J. Li, L. Jin, Y. Ran, Y. Huang, B. Guan, Opt. Express 2017, 25(11), 13305.
- 80Y. Huang, Z. Tian, L. Sun, D. Sun, J. Li, Y. Ran, B. Guan, Opt. Express 2015, 23(21), 26962.
- 81D. Sun, T. Guo, Y. Ran, Y. Huang, B. Guan, Biosens. Bioelectron. 2014, 61, 541.
- 82J. Thavanathan, N. M. Huang, K. L. Thong, Biosens. Bioelectron. 2014, 55, 91.
- 83H. S. Stoker, Organic and Biological Chemistry, Cengage Learning: Boston, 2011.
- 84T. Tian, Z. M. LeJeune, W. K. Serem, J. Yu, J. C. Garno, in Tip-Based Nanofabrication (Ed: A. A. Tseng), Springer Science+Business Media, New York 2011.
10.1007/978-1-4419-9899-6_5 Google Scholar
- 85B. Schneider, H. M. Berman, in Computational Studies of RNA and DNA (Eds: J. Šponer, F. Lankaš), Springer, Netherlands 2006.
- 86X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, Z. T. Virginia, Appl. Phys. Lett. 2006, 89(163901), 1.
- 87X. Yang, K. Yang, X. Zhao, Z. Lin, Z. Liu, S. Luo, Y. Zhang, Y. Wang, W. Fu, Analyst 2017, 142(24), 4661.
- 88W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, A. P. Alivisatos, Nano Lett. 2003, 3(1), 33.
- 89R. Peltomaa, S. Vaghini, B. Patiño, E. Benito-Peña, M. C. Moreno-Bondi, Anal. Chim. Acta 2016, 935, 231.
- 90A. J. Haes, L. Chang, W. L. Klein, R. P. Van Duyne, J. Am, Chem. Soc. 2005, 127(7), 2264.
- 91J. Escorihuela, M. J. Bañuls, R. Puchades, Á. Maquieira, Bioconjug. Chem. 2012, 23(10), 2121.
- 92X. Liu, W. Tan, Anal. Chem. 1999, 71(22), 5054.