Gut microbiota intervention strategies using active components from medicinal herbs to evaluate clinical efficacy of type 2 diabetes – A review
Bharati Kadamb Patel
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Search for more papers by this authorKadamb Haribhai Patel
School of Applied Sciences, Temasek Polytechnic, Singapore, Singapore
Search for more papers by this authorCorresponding Author
Shabbir M. Moochhala
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Correspondence
Shabbir M. Moochhala, Department of Surgery and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
Email: [email protected]
Search for more papers by this authorBharati Kadamb Patel
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Search for more papers by this authorKadamb Haribhai Patel
School of Applied Sciences, Temasek Polytechnic, Singapore, Singapore
Search for more papers by this authorCorresponding Author
Shabbir M. Moochhala
Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Correspondence
Shabbir M. Moochhala, Department of Surgery and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
Email: [email protected]
Search for more papers by this authorAbstract
There is a myriad of phytocomponents in various medicinal herbs, and some of these substances have low absolute oral bioavailability. There is a complex and nuanced interaction between metabolic profiles and gut microbiota that influences human health and illness. An important component of alternative and complementary health care is the use of medicinal herbs for therapeutic purposes. Expanding facets from numerous scientific discoveries mentioned the potential linkage between intestinal microbiota and the curative capabilities of beneficial components from medicinal herbs upon their recognition. There is a strong interaction between gut microbiota and host at the mucosal barrier of the gastrointestinal tract. This reinforces the notion that it is important to consider the effects of medicinal herbs in relation to gut flora and metabolic disorders, including type 2 diabetes. There has been an explosion in the number of medicinal herbs coming into the spotlight with phytocomponents already recognised as having anti-diabetic effects, such as increased insulin sensitivity and decreased blood sugar levels. The review sites' assertion that altering gastrointestinal microbial community by intervention tactics that modulate the gut microbiota by using phytocomponents from medicinal herbs with a major emphasis only on flavonoids, alkaloids, glycosides, and terpenoids may very well be relevant to T2DM rehabilitation may indeed be relevant. The goal of this review is to present an overview of the potential impacts of using medicinal herbs for the prevention and treatment of type 2 diabetes by modifying the gut microbiota in a healthier manner. Based on the available scientific literature, in order to gain a deeper understanding of how to integrate specialised treatments that are based on intestinal bacteria into mainstream clinical practice, this review is aimed at providing a comprehensive understanding of the pathogenesis and progression of T2DM, as well as more thoughtful strategies to manipulate the gut microbiota with medicinal herbs as an integral part of intervention strategies.
CONFLICT OF INTEREST
The authors declare that that there is no conflict of interest regarding the publication of this review.
REFERENCES
- 1Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015; 6(1): 87-123. doi:10.3390/genes6010087
- 2Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Review. Front Immunol. 2020: 11. doi:10.3389/fimmu.2020.571731
- 3Association AD. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin Diab. 2019; 37(1): 11.
- 4Burcelin R, Knauf C, Cani PD. Pancreatic α-cell dysfunction in diabetes. Diabetes Metab. 2008; 34: S49-S55.
- 5Mulder H, Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009; 52(7): 1240-1249. doi:10.1007/s00125-009-1359-y
- 6Cooper MS, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab. 2009; 94(12): 4645-4654. doi:10.1210/jc.2009-1412
- 7Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006; 368(9548): 1696-1705. doi:10.1016/s0140-6736(06)69705-5
- 8Danda RS, Habiba NM, Rincon-Choles H, et al. Kidney involvement in a nongenetic rat model of type 2 diabetes. Kidney Int. 2005; 68(6): 2562-2571.
- 9Kyriachenko Y, Falalyeyeva T, Korotkyi O, Molochek N, Kobyliak N. Crosstalk between gut microbiota and antidiabetic drug action. World J Diab. 2019; 10(3): 154.
- 10Martínez Y, Más Toro D. Role of herbs and medicinal spices as modulators of gut microbiota. In: Akram M, Ahmad RS, eds. Herbs and Spices. London: IntechOpen; 2020.
- 11Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the prevention of type 2 diabetes: a status report. Am J Lifestyle Med. 2018; 12(1): 4-20. doi:10.1177/1559827615619159
- 12Willey J, Wakefield M, Silver HJ. Exploring the diets of adults with obesity and type II diabetes from nine diverse countries: dietary intakes, patterns, and quality. Nutrients. 2020; 12(7): 2027.
- 13Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2): 88-98.
- 14Hansen LJ, de Fine Olivarius N, Siersma V. 16-year excess all-cause mortality of newly diagnosed type 2 diabetic patients: a cohort study. BMC Public Health. 2009; 9(1): 1-8.
- 15Kang YM, Cho YK, Lee SE, et al. Cardiovascular diseases and life expectancy in adults with type 2 diabetes: a Korean national sample cohort study. J Clin Endocrinol Metab. 2017; 102(9): 3443-3451.
- 16Leung M-YM, Pollack LM, Colditz GA, Chang S-H. Life years lost and lifetime health care expenditures associated with diabetes in the US, National Health Interview Survey, 1997–2000. Diabetes Care. 2015; 38(3): 460-468.
- 17Morgan CL, Currie CJ, Peters JR. Relationship between diabetes and mortality: a population study using record linkage. Diabetes Care. 2000; 23(8): 1103-1107.
- 18Muggeo M, Verlato G, Bonora E, et al. The Verona diabetes study: a population-based survey on known diabetes mellitus prevalence and 5-year all-cause mortality. Diabetologia. 1995; 38(3): 318-325.
- 19Tancredi M, Rosengren A, Svensson A-M, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015; 373(18): 1720-1732.
- 20Wright AK, Kontopantelis E, Emsley R, et al. Life expectancy and cause-specific mortality in type 2 diabetes: a population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care. 2017; 40(3): 338-345.
- 21Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet. 2011; 378(9786): 182-197. doi:10.1016/s0140-6736(11)60207-9
- 22Possemiers S, Bolca S, Verstraete W, Heyerick A. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011; 82(1): 53-66.
- 23Hugon P, Lagier J-C, Colson P, Bittar F, Raoult D. Repertoire of human gut microbes. Microb Pathog. 2017; 106: 103-112.
- 24Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346): 174-180. doi:10.1038/nature09944
- 25Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015; 12(5): 303-310. doi:10.1038/nrgastro.2015.47
- 26Salazar N, Arboleya S, Valdés L, et al. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Fron Genet. 2014; 5(11): 406. doi:10.3389/fgene.2014.00406
- 27Feng Q, Chen W-D, Wang Y-D. Gut microbiota: an integral moderator in health and disease. Front Microbiol. 2018; 9: 151.
- 28Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21(29): 8787-8803. doi:10.3748/wjg.v21.i29.8787
- 29Walker A. Intestinal colonization and programming of the intestinal immune response. J Clin Gastroenterol. 2014; 48 Suppl 1(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2013): S8-S11. doi:10.1097/MCG.0000000000000230
- 30Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecol Health Dis. 2015; 26(1):26050.
- 31Rumney CJ, Rowland IR. In vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr. 1992; 31(4): 299-331. doi:10.1080/10408399209527575
- 32Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6(2): 320-329. doi:10.1038/ismej.2011.109
- 33Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015; 37(1): 47-55. doi:10.1007/s00281-014-0454-4
- 34Gionchetti P, Rizzello F, Venturi A, Campieri M. Probiotics in infective diarrhoea and inflammatory bowel diseases. J Gastroenterol Hepatol (Austr). 2000; 15(5): 489-493. doi:10.1046/j.1440-1746.2000.02162.x
- 35Salminen S, Bouley C, Boutron MC, et al. Functional food science and gastrointestinal physiology and function. Br J Nutr. 1998; 80(S1): S147-S171. doi:10.1079/BJN19980108
- 36Ma Q, Li Y, Li P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019; 117:109138.
- 37Larsen N, Vogensen FK, Van Den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5(2):e9085.
- 38Seitz J, Trinh S, Herpertz-Dahlmann B. The microbiome and eating disorders. Psychiatr Clin. 2019; 42(1): 93-103.
- 39Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262-1267.
- 40Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016; 535(7612): 376-381.
- 41Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016; 5(9): 795-803.
- 42Nagalingam A. Chapter 15 – Drug delivery aspects of herbal medicines. In: S Arumugam, K Watanabe, eds. Japanese Kampo Medicines for the Treatment of Common Diseases: Focus on Inflammation. Academic Press; 2017: 143-164.
10.1016/B978-0-12-809398-6.00015-9 Google Scholar
- 43Pan S-Y, Zhou S-F, Gao S-H, et al. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid-Based Complement Altern Med. 2013; 2013:627375. doi:10.1155/2013/627375
- 44Geneva W. World Health Organization General guidelines for methodologies on research and evaluation of traditional medicine. WHO: Geneva. 2000.
- 45Velu G, Palanichamy V, Rajan AP. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: S Roopan, G Madhumitha, eds., Bioorganic Phase in Natural food: An Overview. Springer; 2018: 135-156.
10.1007/978-3-319-74210-6_8 Google Scholar
- 46Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009; 57(15): 6485-6501.
- 47Jakhetia V, Patel R, Khatri P, et al. Cinnamon: a pharmacological review. J Adv Sci Res. 2010; 1(2): 19-23.
- 48Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016; 7: 1538. doi:10.3389/fmicb.2016.01538
- 49Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002; 113: 71s-88s. doi:10.1016/s0002-9343(01)00995-0. Suppl 9B.
- 50Manson MM. Cancer prevention–the potential for diet to modulate molecular signalling. Trends Mol Med. 2003; 9(1): 11-18.
- 51Onyekaba TU, Chinedu OG, Fred AC. Phytochemical screening and investigations of antibacterial activities of various fractions of the ethanol leaves extract of Moringa oleifera lam (Moringaceae). Int J Pharmaceut, Chem Biol Sci. 2013; 3(3).
- 52Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003; 3(10): 768-780. doi:10.1038/nrc1189
- 53Enwa F. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – a review. J Pharmaceut, Chem Biol Sci. 2014; 2: 77-85.
- 54Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electr Phys. 2016; 8(1): 1832-1842. doi:10.19082/1832
- 55Prabhakar PK, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diab Rev. 2008; 4(4): 291-308.
- 56Bindu J, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech. 2019; 9(1): 4. doi:10.1007/s13205-018-1528-0
- 57Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes. 2021; 12(10): 1693-1703. doi:10.4239/wjd.v12.i10.1693
- 58CMd Maranduba, C, De Castro SBR, GTd Souza, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. 2015; 2015:931574. doi:10.1155/2015/931574
- 59Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016; 375(24): 2369-2379.
- 60Xu J, Chen HB, Li SL. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med Res Rev. 2017; 37(5): 1140-1185.
- 61An X, Bao Q, Di S, et al. The interaction between the gut microbiota and herbal medicines. Biomed Pharmacother. 2019; 118:109252. doi:10.1016/j.biopha.2019.109252
- 62An X, Bao Q, Di S, et al. The interaction between the gut microbiota and herbal medicines. Biomed Pharmacother. 2019; 118:109252.
- 63Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020; 11(3): 253-264. doi:10.1080/19490976.2020.1717719
- 64Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 2021; 117:154712.
- 65O'Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016; 13(12): 691-706. doi:10.1038/nrgastro.2016.165
- 66Sun M-F, Shen Y-Q. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev. 2018; 45: 53-61. doi:10.1016/j.arr.2018.04.004
- 67Wu J, Wang K, Wang X, Pang Y, Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell. 2021; 12(5): 360-373. doi:10.1007/s13238-020-00814-7
- 68Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome. 2021; 9(1): 162. doi:10.1186/s40168-021-01093-y
- 69Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019; 10: 29. doi:10.3389/fendo.2019.00029
- 70Aoun A, Darwish F, Hamod N. The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev Nutr Food Sci. 2020; 25(2): 113-123. doi:10.3746/pnf.2020.25.2.113
- 71Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2021; 14(1). doi:10.3390/nu14010166
- 72Kobyliak N, Virchenko O, Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr J. 2016; 15(1): 43. doi:10.1186/s12937-016-0166-9
- 73Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020; 51:102590. doi:10.1016/j.ebiom.2019.11.051
- 74Suceveanu AI, Stoian AP, Parepa I, et al. Gut microbiota patterns in obese and type 2 diabetes (T2D) patients from romanian black sea coast region. Rev Chim. 2018; 69(8): 2260-2267.
- 75Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013; 34(1): 39-58. doi:10.1016/j.mam.2012.11.001
- 76Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012; 3(4): 279-288. doi:10.4161/gmic.19625
- 77Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014; 5: 494.
- 78Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488(7410): 178-184. doi:10.1038/nature11319
- 79Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019; 99(4): 1877-2013. doi:10.1152/physrev.00018.2018
- 80Kim SK, Guevarra RB, Kim YT, et al. Role of probiotics in human gut microbiome-associated diseases. J Microbiol Biotechnol. 2019; 29(9): 1335-1340. doi:10.4014/jmb.1906.06064
- 81Li S, Fu C, Zhao Y, He J. Intervention with α-Ketoglutarate Ameliorates Colitis-Related Colorectal Carcinoma via Modulation of the Gut Microbiome. Biomed Res Int. 2019; 2019:8020785. doi:10.1155/2019/8020785
- 82Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018; 33(4): 570-580.
- 83Rajagopala SV, Vashee S, Oldfield LM, et al. The human microbiome and cancerthe human microbiome and cancer. Cancer Prev Res. 2017; 10(4): 226-234.
- 84Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010; 8(4): 435-454.
- 85Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009; 136(1): 65-80. doi:10.1053/j.gastro.2008.10.080
- 86Sikalidis AK, Maykish A. The gut microbiome and type 2 diabetes mellitus: discussing a complex relationship. Biomedicines. 2020; 8(1). doi:10.3390/biomedicines8010008
- 87Olesen SW, Alm EJ. Dysbiosis is not an answer. Nat Microbiol. 2016; 1:16228. doi:10.1038/nmicrobiol.2016.228
- 88Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012; 3(4): 279-288. doi:10.4161/gmic.19625
- 89Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7(3): 189-200.
- 90Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015; 21(11): 702-714.
- 91Greiner T, Bäckhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab. 2011; 22(4): 117-123.
- 92Sircana A, Framarin L, Leone N, et al. Altered gut microbiota in type 2 diabetes: just a coincidence? Curr Diab Rep. 2018; 18(10): 98. doi:10.1007/s11892-018-1057-6
- 93Sato J, Kanazawa A, Ikeda F, et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care. 2014; 37(8): 2343-2350. doi:10.2337/dc13-2817
- 94Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014; 20(23): 7381-7391. doi:10.3748/wjg.v20.i23.7381
- 95Gupta S, Maratha A, Siednienko J, et al. Analysis of inflammatory cytokine and TLR expression levels in type 2 diabetes with complications. Sci Rep. 2017; 7(1): 7633. doi:10.1038/s41598-017-07230-8
- 96Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014; 99(1): 39-48. doi:10.1210/jc.2013-3092
- 97Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sci. 2000; 67(3): 291-300. doi:10.1016/S0024-3205(00)00622-6
- 98Skopiński P, Rogala E, Duda-Król B, et al. Increased interleukin-18 content and angiogenic activity of sera from diabetic (Type 2) patients with background retinopathy. J Diab Complicat. 2005; 19(6): 335-338. doi:10.1016/j.jdiacomp.2005.02.008
- 99Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011; 62: 361-380. doi:10.1146/annurev-med-012510-175505
- 100Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. J Parent Enteral Nutr. 2011; 35(5S): 14S-20S. doi:10.1177/0148607111413772
- 101Luca M, Di Mauro M, Di Mauro M, Luca A. Gut microbiota in Alzheimer's disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Long. 2019: 2019.
- 102Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020; 20(1): 40-54.
- 103Belizário JE, Faintuch J, Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inflamm. 2018: 2018.
- 104Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol. 2019; 10: 29.
- 105Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Path. 2021; 13(1): 50. doi:10.1186/s13099-021-00446-0
- 106Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361:k2179 doi:10.1136/bmj.k2179
- 107O'Keefe SJ. The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt's hypothesis revisited. Lancet Gastroenterol Hepatol. 2019; 4(12): 984-996.
- 108O'Grady J, O'Connor EM, Shanahan F. Dietary fibre in the era of microbiome science. Aliment Pharmacol Ther. 2019; 49(5): 506-515.
- 109Riddell MC, Miadovnik L, Simms M, Li B, Zisser H. Advances in exercise, physical activity, and diabetes mellitus. Diabetes Technol Ther. 2013; 15(S1):S-96-S-106.
- 110Yang L, Lin H, Lin W, Xu X. Exercise Ameliorates insulin resistance of type 2 diabetes through motivating short-chain fatty acid-mediated skeletal muscle cell autophagy. Biology (Basel). 2020; 9(8). doi:10.3390/biology9080203
- 111Valder S, Brinkmann C. Exercise for the diabetic gut-potential health effects and underlying mechanisms. Nutrients. 2022; 14(4). doi:10.3390/nu14040813
- 112Clarke SF, Murphy EF, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014; 63(12): 1913-1920. doi:10.1136/gutjnl-2013-306541
- 113Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol. 2019; 103(23-24): 9229-9238. doi:10.1007/s00253-019-10156-y
- 114Panwar H, Rashmi HM, Batish VK, Grover S. Probiotics as potential biotherapeutics in the management of type 2 diabetes - prospects and perspectives. Diabetes Metab Res Rev. 2013; 29(2): 103-112. doi:10.1002/dmrr.2376
- 115Balakumar M, Prabhu D, Sathishkumar C, et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018; 57(1): 279-295. doi:10.1007/s00394-016-1317-7
- 116Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020; 18(1): 30. doi:10.1186/s12967-020-02213-2
- 117Wang L, Yang H, Huang H, et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and dose-response meta-analysis of 33 randomized controlled trials. J Transl Med. 2019; 17(1): 410. doi:10.1186/s12967-019-02159-0
- 118Sheth M, Chand V, Thakuria A. Inflated levels of scfa, bifidobacteria and lactobacillus improves the status of pre hypertension and type 2 diabetes mellitus in subjects residing in north east india – a randomized control trial with synbiotic supplementation. Int J Curr Pharmaceut Res. 2015; 7: 33-36.
- 119Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes Metab. 2019; 21(3): 479-490. doi:10.1111/dom.13561
- 120Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017; 26(4): 611-619. doi:10.1016/j.cmet.2017.09.008
- 121Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143(4): 913-916. doi:10.1053/j.gastro.2012.06.031. e7.
- 122Al-Snafi A, Majid W, Talab T. Medicinal plants with antidiabetic effects – an overview (part 1). IOSR J Pharm. 2019; 9: 9-46.
- 123Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002; 81(1): 81-100. doi:10.1016/s0378-8741(02)00059-4
- 124Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid Med Cell Longev. 2020; 2020:1356893. doi:10.1155/2020/1356893
- 125Peterson CT, Sharma V, Uchitel S, et al. Prebiotic potential of herbal medicines used in digestive health and disease. J Altern Complement Med. 2018; 24(7): 656-665. doi:10.1089/acm.2017.0422
- 126Wei Y, Yang H, Zhu C, Deng J, Fan D. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice. J Agric Food Chem. 2020; 68(18): 5107-5117. doi:10.1021/acs.jafc.0c00605
- 127Zhang B, Yue R, Chen Y, et al. Gut microbiota, a potential new target for Chinese herbal medicines in treating diabetes Mellitus. Evid Based Complement Alternat Med. 2019; 2019:2634898. doi:10.1155/2019/2634898
- 128Bi R, Gao J, Pan L, Lai X. Progress in the treatment of diabetes mellitus based on intestinal flora homeostasis and the advancement of holistic analysis methods. Nat Prod Commun. 2020; 15(4): 1-11.
- 129Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J. 2021. doi:10.1111/febs.16306
- 130Ai X, Hou Y, Wang X, et al. Amelioration of dry eye syndrome in db/db mice with diabetes mellitus by treatment with Tibetan Medicine Formula Jikan Mingmu Drops. J Ethnopharmacol. 2019; 241:111992.
- 131Lin L, Luo L, Zhong M, et al. Gut microbiota: a new angle for traditional herbal medicine research. RSC Adv. 2019; 9(30): 17457-17472. doi:10.1039/C9RA01838G
- 132Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr. 2019; 59(6): 848-863.
- 133Zheng Y, Gou X, Zhang L, et al. Interactions between gut microbiota, host, and herbal medicines: a review of new insights into the pathogenesis and treatment of type 2 diabetes. Review. Front Cell Infect Microbiol. 2020;10:doi:10.3389/fcimb.2020.00360
- 134Praparatana R, Maliyam P, Barrows LR, Puttarak P. Flavonoids and phenols, the potential anti-diabetic compounds from Bauhinia strychnifolia Craib. Stem. Molecules. 2022; 27(8): 2393.
- 135Hidalgo-Liberona N, González-Domínguez R, Vegas E, et al. Increased intestinal permeability in older subjects impacts the beneficial effects of dietary polyphenols by modulating their bioavailability. J Agric Food Chem. 2020; 68(44): 12476-12484.
- 136Istas G, Wood E, Le Sayec M, et al. Effects of aronia berry (poly) phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. Am J Clin Nutr. 2019; 110(2): 316-329.
- 137Sandhu AK, Miller MG, Thangthaeng N, et al. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food Funct. 2018; 9(1): 96-106.
- 138Han S, Luo Y, Hu Z, Qin D, Luo F. Targeting gut microbiota in type 2 diabetes mellitus: potential roles of dietary flavonoids. Food Biosci. 2022; 45:101500. doi:10.1016/j.fbio.2021.101500
- 139Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin – from molecule to biological function. Angew Chem Int Ed. 2012; 51(22): 5308-5332.
- 140Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013; 57(9): 1510-1528.
- 141Jacob JN, Badyal DK, Bala S, Toloue M. Evaluation of the in vivo anti-inflammatory and analgesic and in vitro anti-cancer activities of curcumin and its derivatives. Nat Prod Commun. 2013; 8(3). 1934578×1300800321.
- 142Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014; 9(3): 1-9.
- 143Perrone D, Ardito F, Giannatempo G, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Therapeut Med. 2015; 10(5): 1615-1623.
- 144Sultana S, Munir N, Mahmood Z, et al. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: a Review. Biomed Pharmacother. 2021; 135:111078.
- 145Vaughn CJ. Drugs and lactation database: lactmed. J Electr Resour Med Libr. 2012; 9(4): 272-277.
10.1080/15424065.2012.735134 Google Scholar
- 146Zheng J, Cheng J, Zheng S, Feng Q, Curcumin XiaoX. A polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Review. Front Pharmacol. 2018: 9. doi:10.3389/fphar.2018.00472
- 147Jain SK, Rains J, Croad J, Larson B, Jones K. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal. 2009; 11(2): 241-249. doi:10.1089/ars.2008.2140
- 148Shen L, Ji HF. Bidirectional interactions between dietary curcumin and gut microbiota. Crit Rev Food Sci Nutr. 2019; 59(18): 2896-2902. doi:10.1080/10408398.2018.1478388
- 149Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin and its potential impact on microbiota. Nutrients. 2021; 13(6). doi:10.3390/nu13062004
- 150Pluta R, Januszewski S, Ułamek-Kozioł M. Mutual two-way interactions of curcumin and gut microbiota. Int J Mol Sci. 2020; 21(3). doi:10.3390/ijms21031055
- 151Scazzocchio B, Minghetti L, D'Archivio M. Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin. Nutrients. 2020; 12(9): 2499.
- 152Shabbir U, Rubab M, Tyagi A, Oh D-H. Curcumin and its derivatives as theranostic agents in Alzheimer's disease: the implication of nanotechnology. Int J Mol Sci. 2020; 22(1): 196.
- 153Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. A meta-analysis of the clinical use of curcumin for irritable bowel syndrome (IBS). J Clin Med. 2018; 7(10). doi:10.3390/jcm7100298
- 154Shen L, Liu L, Ji H-F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017; 61(1):1361780.
- 155Zam W. Gut microbiota as a prospective therapeutic target for curcumin: a review of mutual influence. J Nutr Metab. 2018;2018:1367984.
- 156Peterson CT, Vaughn AR, Sharma V, et al. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J Evid Based Integr Med. 2018; 23, doi:10.1177/2515690x18790725. 2515690×18790725
- 157Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered. 2021; 12(2): 11947-11958. doi:10.1080/21655979.2021.2009322
- 158Yuan T, Yin Z, Yan Z, et al. Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fitoterapia. 2020; 146:104665.
- 159Imperatore C, Aiello A, D'Aniello F, Senese M, Menna M. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules. 2014; 19(12): 20391-20423. doi:10.3390/molecules191220391
- 160Derosa G, Maffioli P. Alkaloids in the nature: pharmacological applications in clinical practice of berberine and mate tea. Curr Top Med Chem. 2014; 14(2): 200-206. doi:10.2174/1568026613666131213155252
- 161Chang W, Chen L, Hatch GM. Berberine as a therapy for type 2 diabetes and its complications: from mechanism of action to clinical studies. Biochem Cell Biol. 2015; 93(5): 479-486.
- 162Ni W-J, Ding H-H, Tang L-Q. Berberine as a promising anti-diabetic nephropathy drug: an analysis of its effects and mechanisms. Eur J Pharmacol. 2015; 760: 103-112.
- 163Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006; 55(8): 2256-2264.
- 164Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013; 145(2): 396-406. doi:10.1053/j.gastro.2013.04.056. e10.
- 165Leng S-h, Lu F-E, Xu L-j. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin. 2004; 25(4): 496-502.
- 166Kong W-J, Zhang H, Song D-Q, et al. Berberine reduces insulin resistance through protein kinase C–dependent up-regulation of insulin receptor expression. Metabolism. 2009; 58(1): 109-119.
- 167Gu J, Gao F, Zhao T. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats. J Physiol Pharmacol. 2012; 63(5): 505-513.
- 168Habtemariam S. Berberine pharmacology and the gut microbiota: a hidden therapeutic link. Pharmacol Res. 2020; 155:104722. doi:10.1016/j.phrs.2020.104722
- 169Čerňáková M, Košťálová D. Antimicrobial activity of berberine—a constituent of Mahonia aquifolium. Folia Microbiol (Praha). 2002; 47(4): 375-378.
- 170Chae SH, Jeong IH, Choi DH, Oh JW, Ahn YJ. Growth-inhibiting effects of Coptis japonica root-derived isoquinoline alkaloids on human intestinal bacteria. J Agric Food Chem. 1999; 47(3): 934-938. doi:10.1021/jf980991o
- 171Chen L, Lu W, Li Y. Berberine ameliorates type 2 diabetes via modulation of Bifidobacterium species, tumor necrosis factor-α, and lipopolysaccharide. Int J Clin Exp Med. 2016; 9(6): 9365-9372.
- 172Do VT, Baird BG, Kockler DR. Probiotics for maintaining remission of ulcerative colitis in adults. Ann Pharmacother. 2010; 44(3): 565-571. doi:10.1345/aph.1M498
- 173Haller D, Antoine J-M, Bengmark S, Enck P, Rijkers GT, Lenoir-Wijnkoop I. Guidance for substantiating the evidence for beneficial effects of probiotics: probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J Nutr. 2010; 140(3): 690S-697S. doi:10.3945/jn.109.113746
- 174Riquelme AJ, Calvo MA, Guzmán AM, et al. Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients. J Clin Gastroenterol. 2003; 36(1): 41-43. doi:10.1097/00004836-200301000-00013
- 175Sandborn WJ, McLeod RS, Jewell DP. Pharmacotherapy for induction and maintenance of remission in pouchitis. Cochrane Database Syst Rev. 1998:CD001176.
10.1002/14651858.CD001176 Google Scholar
- 176Liu D, Zhang Y, Liu Y, et al. Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Exp Clin Endocrinol Diab. 2018; 126(08): 513-520.
- 177Shan C, Yang J, Kong Y, et al. Alteration of the intestinal barrier and GLP2 secretion in Berberine-treated type 2 diabetic rats. J Endocrinol. 2013; 218(3): 255-262.
- 178Gong J, Hu M, Huang Z, et al. Berberine attenuates intestinal mucosal barrier dysfunction in type 2 diabetic rats. Front Pharmacol. 2017; 8: 42.
- 179Feng R, Shou J-W, Zhao Z-X, et al. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep. 2015; 5(1): 1-15.
- 180Wei S-c, Dong S, Xu L-j, Zhang C-y. Intestinal absorption of berberine and 8-hydroxy dihydroberberine and their effects on sugar absorption in rat small intestine. J Huazh Univ Sci Technol. 2014; 34(2): 186-189.
- 181Zhang X, Zhao Y, Zhang M, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One. 2012; 7(8):e42529.
- 182Xie W, Du L. Diabetes is an inflammatory disease: evidence from traditional Chinese medicines. Diab, Obes Metab. 2011; 13(4): 289-301.
- 183Dregan A, Charlton J, Chowienczyk P, Gulliford MC. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation. 2014; 130(10): 837-844.
- 184Pang GM, Li FX, Yan Y, et al. Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chin Med J (Engl). 2019; 132(1): 78-85. doi:10.1097/cm9.0000000000000006
- 185Jiang X, Sun B, Zhou Z. Preclinical Studies of natural products targeting the gut microbiota: beneficial effects on diabetes. J Agric Food Chem. 2022; 70(28): 8569-8581. doi:10.1021/acs.jafc.2c02960
- 186Goto T, Takahashi N, Hirai S, Kawada T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res. 2010; 2010:483958. doi:10.1155/2010/483958
- 187Jin D, Chen X. Progress in research on hypoglycemic effect of traditional Chinese medicine. Zhejiang J Integr Tradit Chin West Med. 2015; 25: 1-3.
- 188Xia X, Xiao J. Natural ingredients from medicine food homology as chemopreventive reagents against type 2 diabetes mellitus by modulating gut microbiota homoeostasis. Molecules. 2021; 26(22): 6934.
- 189Mugford ST, Osbourn A. Saponin synthesis and function. Isoprenoid Synthesis in Plants and Microorganisms. 2012; 405–424. doi:10.1007/978-1-4614-4063-5_28
10.1007/978?1?4614?4063?5_28 Google Scholar
- 190Luo Z, Xu W, Zhang Y, Di L, Shan J. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacol Res. 2020; 160:105088. doi:10.1016/j.phrs.2020.105088
- 191Liu J, Henkel T. Traditional Chinese medicine (TCM): are polyphenols and saponins the key ingredients triggering biological activities? Curr Med Chem. 2002; 9(15): 1483-1485.
- 192Choudhary N, Khatik GL, Suttee A. The possible role of saponin in type-II diabetes – a review. Curr Diabetes Rev. 2021; 17(2): 107-121. doi:10.2174/1573399816666200516173829
- 193Leung KW, Wong AS-T. Pharmacology of ginsenosides: a literature review. Chin Med. 2010; 5(1): 20. doi:10.1186/1749-8546-5-20
- 194Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Review. Front Pharmacol. 2018; 9. doi:10.3389/fphar.2018.00423
- 195Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017; 41(4): 435-443. doi:10.1016/j.jgr.2016.08.004
- 196Li W, Chen C. Response to the comments on caspase-mediated anti-apoptotic effect of ginsenoside Rg5, a main rare ginsenoside, on acetaminophen-induced hepatotoxicity in mice. J Agric Food Chem. 2018; 66(7): 1734-1735. doi:10.1021/acs.jafc.7b05975
- 197Sun Y, Liu Y, Chen K. Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. Sci China Life Sci. 2016; 59(3): 292-298. doi:10.1007/s11427-016-5007-8
- 198Liu MY, Liu F, Gao YL, et al. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med. 2021; 22(2): 840. doi:10.3892/etm.2021.10272
- 199Du Y, Neng Q, Li Y, et al. Gastrointestinal autonomic neuropathy exacerbates gut microbiota dysbiosis in adult patients with type 2 diabetes mellitus. Front Cell Infect Microbiol. 2021; 11:804733. doi:10.3389/fcimb.2021.804733
- 200Marietta E, Horwath I, Meyer S, et al. Administration of human derived upper gut commensal Prevotella histicola delays the onset of type 1 diabetes in NOD mice. BMC Microbiol. 2022; 22(1): 8. doi:10.1186/s12866-021-02406-9
- 201Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017; 60(6): 943-951.
- 202Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017; 8(1): 1-12.
- 203Meex RC, Blaak EE, van Loon LJ. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev. 2019; 20(9): 1205-1217.
- 204Sharma BR, Jaiswal S, Ravindra PV. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother. 2022; 152:113148. doi:10.1016/j.biopha.2022.113148