Deep-Red to Near-Infrared Carbon Dots in Biosensing and Bio-medical Applications
Shan Huang
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorLi Yan
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCorresponding Author
Xiaojun Chen
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jun-Jie Zhu
School of Chemistry and chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorShan Huang
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorLi Yan
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
Search for more papers by this authorCorresponding Author
Xiaojun Chen
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jun-Jie Zhu
School of Chemistry and chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
With the rapid development in the field of biomedical diagnosis and treatment, carbon dots (CDs) with favorable photostability, biocompatibility and high quantum yields for deep-red to near-infrared emission have attracted the attention of a majority of researchers. By enlarging the sp2 domain in the core of CDs, doping them with heteroatoms like nitrogen and sulfur, applying hydrothermal, electrochemical, or microwave-assisted techniques, CDs can be made with the aforementioned photoemission capabilities. In view of these excellent properties, CDs are flourishing in biosensing and biomedical applications, so that a thorough description and discussion of this topic is beneficial to capture the up-to-date progress of CDs in this field, providing suggestions and considerations for readers.
References
- 1 Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.
- 2 Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.
- 3 Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31, 1808283.
- 4 Chung, Y. J.; Kim, J.; Park, C. B. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano 2020, 14, 6470–6497.
- 5 Ragazzon, G.; Cadranel, A.; Ushakova, E. V.; Wang, Y.; Guldi, D. M.; Rogach, A. L.; Kotov, N. A.; Prato, M. Optical processes in carbon nanocolloids. Chem 2021, 7, 606–628.
- 6 Feng, T.; Ai, X.; Ong, H.; Zhao, Y. Dual-Responsive Carbon Dots for Tumor Extracellular Microenvironment Triggered Targeting and Enhanced Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 18732–18740.
- 7 Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H.; Guan, X.; Hu, X.; Xie, Z.; Jing, X.; Sun, Z. Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Adv. Mater. 2014, 26, 3554–3560.
- 8 Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in vivo Cancer Therapeutic Efficiency. ACS Nano 2016, 10, 4410–4420.
- 9 Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Carbon Dots for in vivo Bioimaging and Theranostics. Small 2019, 15, 1805087.
- 10 Xu, D.; Lin, Q.; Chang, H. T. Recent Advances and Sensing Applications of Carbon Dots. Small Methods 2020, 4, 1900387.
- 11 Li, H.; Yan, X.; Kong, D.; Jin, R.; Sun, C.; Du, D.; Lin, Y.; Lu, G. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020, 5, 218–234.
- 12 Zhu, Z.; Zhai, Y.; Li, Z.; Zhu, P.; Mao, S.; Zhu, C.; Du, D.; Belfiore, L. A.; Tang, J.; Lin, Y. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52–79.
- 13
Wu, Y.; Zhang, H.; Pan, A.; Wang, Q.; Zhang, Y.; Zhou, G.; He, L. White-Light-Emitting Melamine-Formaldehyde Microspheres through Polymer-Mediated Aggregation and Encapsulation of Graphene Quantum Dots. Adv. Sci. 2019, 6, 1801432.
10.1002/advs.201801432 Google Scholar
- 14 Wang, J.; Zhang, S.; Li, Y.; Wu, C.; Zhang, W.; Zhang, H.; Xie, Z.; Zhou, S. Ultra-Broadband Random Laser and White-Light Emissive Carbon Dots/Crystal In-Situ Hybrids. Small 2022, 18, 2203152.
- 15 Fu, R.; Song, H.; Liu, X.; Zhang, Y.; Xiao, G.; Zou, B.; Waterhouse, G. I. N.; Lu, S. Disulfide Crosslinking-Induced Aggregation: Towards Solid-State Fluorescent Carbon Dots with Vastly Different Emission Colors. Chin. J. Chem. 2023, 41, 1007–1014.
- 16 Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740.
- 17 Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 2015, 54, 5360–5363.
- 18 Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10, 484–491.
- 19 Qu, S.; Zhou, D.; Li, D.; Ji, W.; Jing, P.; Han, D.; Liu, L.; Zeng, H.; Shen, D. Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp2 -Domain Controlling and Surface Charges Engineering. Adv. Mater. 2016, 28, 3516–3521.
- 20 Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv. Mater. 2017, 29, 1702910.
- 21 Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small 2018, 14, e1800612.
- 22 Wang, Z.; Jiang, N.; Liu, M.; Zhang, R.; Huang, F.; Chen, D. Bright Electroluminescent White-Light-Emitting Diodes Based on Carbon Dots with Tunable Correlated Color Temperature Enabled by Aggregation. Small 2021, 17, 2104551.
- 23 Xu, X.; Mo, L.; Li, Y.; Pan, X.; Hu, G.; Lei, B.; Zhang, X.; Zheng, M.; Zhuang, J.; Liu, Y.; Hu, C. Construction of Carbon Dots with Color-Tunable Aggregation-Induced Emission by Nitrogen-Induced Intramolecular Charge Transfer. Adv. Mater. 2021, 33, 2104872.
- 24 Wang, H.; Mu, Q.; Wang, K.; Revia, R. A.; Yen, C.; Gu, X.; Tian, B.; Liu, J.; Zhang, M. Nitrogen and Boron Dual-Doped Graphene Quantum Dots for Near-Infrared Second Window Imaging and Photothermal Therapy. Appl. Mater. Today 2019, 14, 108–117.
- 25 Xian, Y.; Li, K. Hydrothermal Synthesis of High-Yield Red Fluorescent Carbon Dots with Ultra-Narrow Emission by Controlled O/N Elements. Adv. Mater. 2022, 34, 2201031.
- 26 Cai, K.-B.; Huang, H.-Y.; Hsieh, M.-L.; Chen, P.-W.; Chiang, S.-E.; Chang, S. H.; Shen, J.-L.; Liu, W.-R.; Yuan, C.-T. Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators. ACS Nano 2022, 16, 3994–4003.
- 27 Zhang, Y.; Song, H.; Wang, L.; Yu, J.; Wang, B.; Hu, Y.; Zang, S.-Q.; Yang, B.; Lu, S. Solid-State Red Laser with a Single Longitudinal Mode from Carbon Dots. Angew. Chem. Int. Ed. 2021, 60, 25514–25521.
- 28 Soni, N.; Singh, S.; Sharma, S.; Batra, G.; Kaushik, K.; Rao, C.; Verma, N. C.; Mondal, B.; Yadav, A.; Nandi, C. K. Absorption and emission of light in red emissive carbon nanodots. Chem. Sci. 2021, 12, 3615–3626.
- 29
Liu, K.-K.; Song, S.-Y.; Sui, L.-Z.; Wu, S.-X.; Jing, P.-T.; Wang, R.-Q.; Li, Q.-Y.; Wu, G.-R.; Zhang, Z.-Z.; Yuan, K.-J.; Shan, C.-X. Efficient Red/ Near-Infrared-Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Adv. Sci. 2019, 6, 1900766.
10.1002/advs.201900766 Google Scholar
- 30 Xiao, L.; Sun, H. Novel properties and applications of carbon nanodots. Nanoscale Horiz. 2018, 3, 565–597.
- 31 Ji, C.; Zhou, Y.; Leblanc, R. M.; Peng, Z. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens. 2020, 5, 2724–2741.
- 32 Saleh Mohammadnia, M.; Roghani-Mamaqani, H.; Mardani, H.; Rezvani-Moghaddam, A.; Hemmati, S.; Salami-Kalajahi, M. Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydr. Polym. 2022, 294, 119768.
- 33 Hallaji, Z.; Bagheri, Z.; Oroujlo, M.; Nemati, M.; Tavassoli, Z.; Ranjbar, B. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Microchim. Acta 2022, 189, 190.
- 34 Wang, Y.; Lv, T.; Yin, K.; Feng, N.; Sun, X.; Zhou, J.; Li, H. Carbon Dot-Based Hydrogels: Preparations, Properties, and Applications. Small 2023, n/a, 2207048.
- 35 Zhang, M.; Su, R.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q.; Li, W.; Li, N.; Chen, Y.; Cai, L.; Xu, Q. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.
- 36 Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z. a.; Chen, A.; Jin, M.; Yang, S. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.
- 37 Yang, X.; Ai, L.; Yu, J.; Waterhouse, G. I. N.; Sui, L.; Ding, J.; Zhang, B.; Yong, X.; Lu, S. Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci. Bull. 2022, 67, 1450–1457.
- 38 Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; Qu, S.; Zbořil, R.; Rogach, A. L. Near-Infrared Excitation/ Emission and Multiphoton-Induced Fluorescence of Carbon Dots. Adv. Mater. 2018, 30, 1705913.
- 39 Wei, S.; Li, H.; Yin, X.; Yang, Q.; Chen, A.; Li, R.; Wang, J.; Yang, R. Revealing graphitic nitrogen participating in p–π conjugated domain as emissive center of red carbon dots and applied to red room-temperature phosphorescence. New J. Chem. 2021, 45, 22335–22343.
- 40 Meierhofer, F.; Dissinger, F.; Weigert, F.; Jungclaus, J.; Müller-Caspary, K.; Waldvogel, S. R.; Resch-Genger, U.; Voss, T. Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. J. Phys. Chem. C 2020, 124, 8894–8904.
- 41 Zhang, Z.; Chen, X.; Fang, G.; Wu, J.; Gao, A. Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-free method. J. Mater. Chem. C 2022, 10, 3153–3162.
- 42 Zhang, S.; Yuan, L.; Liang, G.; Gu, A. Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices. J. Mater. Chem. C 2022, 10, 8441–8458.
- 43 Chen, X.; Zhang, Z.; Wu, J.; Wang, J.; Gao, A. Synthesizing Red Fluorescent Carbon Dots from Rigid Polycyclic Conjugated Molecules: Dual-Mode Sensing and Bioimaging in Biochemical Applications. Part. Part. Syst. Charact. 2021, 38, 2100076.
- 44 Park, Y.; Kim, Y.; Chang, H.; Won, S.; Kim, H.; Kwon, W. Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J. Mater. Chem. B 2020, 8, 8935–8951.
- 45 Cai, S.; Chang, G.; Hu, J.; Wu, J.; Luo, Y.; Zou, G.; Hou, H.; Ji, X. N, S-doped carbon dots as additive for suppression of zinc dendrites in alkaline electrolyte. Chin. J. Chem. 2023, 41, 1697–1704.
- 46 Zhan, Y.; Geng, T.; Liu, Y.; Hu, C.; Zhang, X.; Lei, B.; Zhuang, J.; Wu, X.; Huang, D.; Xiao, G.; Zou, B. Near-Ultraviolet to Near-Infrared Fluorescent Nitrogen-Doped Carbon Dots with Two-Photon and Piezochromic Luminescence. ACS Appl. Mater. Interfaces 2018, 10, 27920–27927.
- 47 Kumari, R.; Kumar, A.; Mishra, N. K.; Sahu, S. K. Polymer-Induced Emission-Active Fluorine-Embedded Carbon Dots for the Preparation of Warm WLEDs with a High Color Rendering Index. Langmuir 2022, 38, 9389–9399.
- 48 Qian, S.; Li, L.; Wu, K.; Wang, Y.; Wei, G.; Zheng, J. Emerging and Versatile Platforms of Metal-Ion-Doped Carbon Dots for Biosensing, Bioimaging, and Disease Therapy. ChemMedChem 2023, 18, e202200479.
- 49 Zhu, P.; Zhang, T.; Li, J.; Ma, J.; Ouyang, X.; Zhao, X.; Xu, M.; Wang, D.; Xu, Q. Near-infrared emission Cu, N-doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. J. Appl. Toxicol. 2021, 41, 789–798.
- 50 Najaflu, M.; Shahgolzari, M.; Bani, F.; Khosroushahi, A. Y. Green Synthesis of Near-Infrared Copper-Doped Carbon Dots from Alcea for Cancer Photothermal Therapy. ACS Omega 2022, 7, 34573–34582.
- 51 Yue, L.; Li, H.; Sun, Q.; Zhang, J.; Luo, X.; Wu, F.; Zhu, X. Red-Emissive Ruthenium-Containing Carbon Dots for Bioimaging and Photodynamic Cancer Therapy. ACS Appl. Nano Mater. 2020, 3, 869–876.
- 52 Jiang, X.; Luo, Z.; Zhang, B.; Li, P.; Xiao, J. a.; Su, W. Moderate microwave-assisted preparation of phthalocyanine-based carbon quantum dots for improved photo-inactivation of bacteria. Inorg. Chem. Commun. 2022, 142, 109543.
- 53 Stepanidenko, E. A.; Skurlov, I. D.; Khavlyuk, P. D.; Onishchuk, D. A.; Koroleva, A. V.; Zhizhin, E. V.; Arefina, I. A.; Kurdyukov, D. A.; Eurov, D. A.; Golubev, V. G.; Baranov, A. V.; Fedorov, A. V.; Ushakova, E. V.; Rogach, A. L. Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates. Nanomaterials 2022, 12, 543.
- 54 Huang, D.; Zhou, H.; Wu, Y.; Wang, T.; Sun, L.; Gao, P.; Sun, Y.; Huang, H.; Zhou, G.; Hu, J. Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to the near infrared region. Carbon 2019, 142, 673–684.
- 55 Zhao, S.; Yang, K.; Jiang, L.; Xiao, J.; Wang, B.; Zeng, L.; Song, X.; Lan, M. Polythiophene-Based Carbon Dots for Imaging-Guided Photodynamic Therapy. ACS Appl. Nano Mater. 2021, 4, 10528–10533.
- 56 Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195.
- 57 Lesani, P.; Singh, G.; Viray, C. M.; Ramaswamy, Y.; Zhu, D. M.; Kingshott, P.; Lu, Z.; Zreiqat, H. Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Appl. Mater. Interfaces 2020, 12, 18395–18406.
- 58 Zhan, Y.; Yang, S.; Luo, F.; Guo, L.; Zeng, Y.; Qiu, B.; Lin, Z. Emission Wavelength Switchable Carbon Dots Combined with Biomimetic Inorganic Nanozymes for a Two-Photon Fluorescence Immunoassay. ACS Appl. Mater. Interfaces 2020, 12, 30085–30094.
- 59 Liu, Y.; Lei, J. H.; Wang, G.; Zhang, Z.; Wu, J.; Zhang, B.; Zhang, H.; Liu, E.; Wang, L.; Liu, T. M.; Xing, G.; Ouyang, D.; Deng, C. X.; Tang, Z.; Qu, S. Toward Strong Near-Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Post-Surface Engineering. Adv. Sci. 2022, 9, e2202283.
- 60 Umami, R.; Permatasari, F. A.; Muyassiroh, D. A. M.; Santika, A. S.; Sundari, C. D. D.; Ivansyah, A. L.; Ogi, T.; Iskandar, F. A rational design of carbon dots via the combination of nitrogen and oxygen functional groups towards the first NIR window absorption. J. Mater. Chem. C 2022, 10, 1394–1402.
- 61 Guo, X.-L.; Ding, Z.-Y.; Deng, S.-M.; Wen, C.-C.; Shen, X.-C.; Jiang, B.-P.; Liang, H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 2018, 134, 519–530.
- 62 Permatasari, F. A.; Umami, R.; Sundari, C. D. D.; Mayangsari, T. R.; Ivansyah, A. L.; Muttaqien, F.; Ogi, T.; Iskandar, F. New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots. Nano Res. 2023, https://doi.org/10.1007/s12274-022-5131-7.
- 63 Ding, H.; Zhou, X.; Qin, B.; Zhou, Z.; Zhao, Y. Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. J. Lumin. 2019, 211, 298–304.
- 64 Wu, Z.-F.; Sun, Z.-N.; Xiong, H.-M. Fluorescent silk obtained by feeding silkworms with fluorescent materials. Chin. J. Chem. 2023, 41, https://doi.org/10.1002/cjoc.202300043.
- 65 Li, P.; Xue, S.; Sun, L.; Zong, X.; An, L.; Qu, D.; Wang, X.; Sun, Z. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light Sci. Appl. 2022, 11, 298.
- 66 Sun, Z.; Yan, F.; Xu, J.; Zhang, H.; Chen, L. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices. Nano Res. 2021, 15, 414–422.
- 67 Gao, D.; Zhao, H.; Chen, X.; Fan, H. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Mater. Today Chem. 2018, 9, 103–113.
- 68 Gao, D.; Zhang, Y.; Liu, A.; Zhu, Y.; Chen, S.; Wei, D.; Sun, J.; Guo, Z.; Fan, H. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering. Chem. Eng. J. 2020, 388, 124199.
- 69 Li, D.; Ushakova, E. V.; Rogach, A. L.; Qu, S. Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications. Small 2021, 17, 2102325.
- 70 Wan, J.; Zhang, X.; Jiang, Y.; Xu, S.; Li, J.; Yu, M.; Zhang, K.; Su, Z. Regulation of multi-color fluorescence of carbonized polymer dots by multiple contributions of effective conjugate size, surface state, and molecular fluorescence. J. Mater. Chem. B 2022, 10, 6991–7002.
- 71 Karakoçak, B. B.; Liang, J.; Kavadiya, S.; Berezin, M. Y.; Biswas, P.; Ravi, N. Optimizing the Synthesis of Red-Emissive Nitrogen-Doped Carbon Dots for Use in Bioimaging. ACS Appl. Nano Mater. 2018, 1, 3682–3692.
- 72 Kundelev, E. V.; Tepliakov, N. V.; Leonov, M. Y.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.; Rogach, A. L. Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. J. Phys. Chem. Lett. 2019, 10, 5111–5116.
- 73 Zhang, Q.; Wang, R.; Feng, B.; Zhong, X.; Ostrikov, K. K. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.
- 74 Zhao, Q.; Song, W.; Zhao, B.; Yang, B. Spectroscopic studies of the optical properties of carbon dots: recent advances and future prospects. Mater. Chem. Front. 2020, 4, 472–488.
- 75 Shen, C.-L.; Lou, Q.; Liu, K.-K.; Dong, L.; Shan, C.-X. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today 2020, 35, 100954.
- 76 Shen, C.-L.; Zheng, G.-S.; Wu, M.-Y.; Wei, J.-Y.; Lou, Q.; Ye, Y.-L.; Liu, Z.-Y.; Zang, J.-H.; Dong, L.; Shan, C.-X. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose. Nanophotonics 2020, 9, 3597–3604.
- 77
Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Adv. Sci. 2019, 6, 1802331.
10.1002/advs.201802331 Google Scholar
- 78 Delnavaz, E.; Amjadi, M. A chemiluminescence probe enhanced by cobalt and nitrogen-doped carbon dots for the determination of a nitrosative stress biomarker. Microchim. Acta 2021, 188, 278.
- 79 Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging. Adv Sci 2020, 7, 1903525.
- 80 Shen, C.; Jiang, T.; Lou, Q.; Zhao, W.; Lv, C.; Zheng, G.; Liu, H.; Li, P.; Dai, L.; Liu, K.; Zang, J.; Wang, F.; Dong, L.; Qu, S.; Cheng, Z.; Shan, C. Near-infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat 2022, 3, 269–285.
- 81 Truskewycz, A.; Yin, H.; Halberg, N.; Lai, D. T. H.; Ball, A. S.; Truong, V. K.; Rybicka, A. M.; Cole, I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small 2022, 18, e2106342.
- 82M, P. A.; Pardhiya, S.; Rajamani, P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. Small 2022, 18, e2105579.
- 83 Yang, Y.; Wei, Q.; Zou, T.; Kong, Y.; Su, L.; Ma, D.; Wang, Y. Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. Sens. Actuators, B 2020, 321, 128534.
- 84 Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Anal. Chem. 2012, 84, 5351–5357.
- 85 Zhao, Q.; Li, X.; Wang, X.; Zang, Z.; Liu, H.; Li, L.; Yu, X.; Yang, X.; Lu, Z.; Zhang, X. Surface amino group modulation of carbon dots with blue, green and red emission as Cu2+ ion reversible detector. Appl. Surf. Sci. 2022, 598, 153892.
- 86 Song, Y.; Zhu, C.; Song, J.; Li, H.; Du, D.; Lin, Y. Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe3+ in Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 7399–7405.
- 87 Gao, W.; Song, H.; Wang, X.; Liu, X.; Pang, X.; Zhou, Y.; Gao, B.; Peng, X. Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in vitro and in vivo. ACS Appl. Mater. Interfaces 2018, 10, 1147–1154.
- 88 Xie, H.; Dong, J.; Duan, J.; Waterhouse, G. I. N.; Hou, J.; Ai, S. Visual and ratiometric fluorescence detection of Hg2+ based on a dual-emission carbon dots-gold nanoclusters nanohybrid. Sens. Actuators, B 2018, 259, 1082–1089.
- 89 Kurniawan, D.; Anjali, B. A.; Setiawan, O.; Ostrikov, K. K.; Chung, Y. G.; Chiang, W.-H. Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS Appl. Mater. Interfaces 2022, 14, 1670–1683.
- 90 Lu, Y.; Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Del. Rev. 2012, 64, 342–352.
- 91 Wang, J.; Shen, S.; Li, D.; Zhan, C.; Yuan, Y.; Yang, X. Photoswitchable Ultrafast Transactivator of Transcription (TAT) Targeting Effect for Nanocarrier-Based On-Demand Drug Delivery. Adv. Funct. Mater. 2018, 28, 1704806.
- 92 Zhang, J.; Zhao, X.; Xian, M.; Dong, C.; Shuang, S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018, 183, 39–47.
- 93 Zhong, Z.; Li, X.; Liu, S.; Zhang, C.; Xu, X.; Liao, L. In vivo study of a novel, safe, rapid, and targeted red carbon dot probe for recognition of tumors with high expression of folate enzyme. RSC Adv. 2021, 11, 28809–28817.
- 94 Li, J.; Yang, S.; Deng, Y.; Chai, P.; Yang, Y.; He, X.; Xie, X.; Kang, Z.; Ding, G.; Zhou, H.; Fan, X. Emancipating Target-Functionalized Carbon Dots from Autophagy Vesicles for a Novel Visualized Tumor Therapy. Adv. Funct. Mater. 2018, 28, 1800881.
- 95 Levine, B.; Klionsky, D. J. Development by Self-Digestion: Molecular Mechanisms and Biological Functions of Autophagy. Dev. Cell 2004, 6, 463–477.
- 96 Shen, C.; Dong, C.; Cheng, L.; Shi, X.; Bi, H. Fluorescent carbon dots from Shewanella oneidensis MR–1 for Hg2+ and tetracycline detection and selective fluorescence imaging of Gram–positive bacteria. J. Environ. Chem. Eng. 2022, 10, 107020.
- 97 Su, R.; Yan, H.; Jiang, X.; Zhang, Y.; Li, P.; Su, W. Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis. J. Mater. Chem. B 2022, 10, 1250–1264.
- 98 Hallaji, Z.; Bagheri, Z.; Kalji, S.-O.; Ermis, E.; Ranjbar, B. Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem 2021, 29, 100271.
- 99 Pan, L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 2016, 8, 17350–17356.
- 100 Yang, C.; Zhu, S.; Li, Z.; Li, Z.; Chen, C.; Sun, L.; Tang, W.; Liu, R.; Sun, Y.; Yu, M. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chem. Commun. 2016, 52, 11912–11914.
- 101 Jiang, L.; Ding, H.; Xu, M.; Hu, X.; Li, S.; Zhang, M.; Zhang, Q.; Wang, Q.; Lu, S.; Tian, Y.; Bi, H. UV–Vis–NIR Full-Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections and Deep-Red Fluorescence at Nucleoli and in vivo. Small 2020, 16, 2000680.
- 102 Hu, J.; Guo, Y.; Geng, X.; Wang, J.; Li, S.; Sun, Y.; Qu, L.; Li, Z. Tuning asymmetric electronic structure endows carbon dots with unexpected huge stokes shift for high contrast in vivo imaging. Chem. Eng. J. 2022, 446, 136928.
- 103
Ci, Q.; Wang, Y.; Wu, B.; Coy, E.; Li, J. j.; Jiang, D.; Zhang, P.; Wang, G. Fe-Doped Carbon Dots as NIR-II Fluorescence Probe for in vivo Gastric Imaging and pH Detection. Adv. Sci. 2023, n/a, 2206271.
10.1002/advs.202206271 Google Scholar
- 104 Gao, P.; Hui, H.; Guo, C.; Liu, Y.; Su, Y.; Huang, X.; Guo, K.; Shang, W.; Jiang, J.; Tian, J. Renal clearing carbon dots-based near-infrared fluorescent super-small nanoprobe for renal imaging. Carbon 2023, 201, 805–814.
- 105
Xu, K.-F.; Jia, H.-R.; Wang, Z.; Feng, H.-H.; Li, L.-Y.; Zhang, R.; Durrani, S.; Lin, F.; Wu, F.-G. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and in vivo Drug Toxicity. Small 2023, n/a, 2205890.
10.1002/smll.202205890 Google Scholar
- 106 Zhu, P.; Wang, S.; Zhang, Y.; Li, Y.; Liu, Y.; Li, W.; Wang, Y.; Yan, X.; Luo, D. Carbon Dots in Biomedicine: A Review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.
- 107 Li, B.; Zhao, S.; Huang, L.; Wang, Q.; Xiao, J.; Lan, M. Recent advances and prospects of carbon dots in phototherapy. Chem. Eng. J. 2021, 408, 127245.
- 108 Kandoth, N.; Barman, S.; Chatterjee, A.; Sarkar, S.; Dey, A. K.; Pramanik, S. K.; Das, A. Photoactive Lanthanide-Based Upconverting Nanoclusters for Antimicrobial Applications. Adv. Funct. Mater. 2021, 31, 2104480.
- 109 Liu, E.; Wu, J.; Liang, T.; Zhang, B.; Tang, Z.; Qu, S. Toward Rational Design of Carbon Nanodots with High Photothermal Efficiency for Tumor Photothermal Therapy. Chin. J. Chem. 2023, 41, https://doi.org/10.1002/cjoc.202300101.
- 110 Xu, Y.; Wang, C.; Ran, G.; Chen, D.; Pang, Q.; Song, Q. Phosphate-Assisted Transformation of Methylene Blue to Red-Emissive Carbon Dots with Enhanced Singlet Oxygen Generation for Photodynamic Therapy. ACS Appl. Nano Mater. 2021, 4, 4820–4828.
- 111 Yi, S.; Deng, S.; Guo, X.; Pang, C.; Zeng, J.; Ji, S.; Liang, H.; Shen, X.-C.; Jiang, B.-P. Red emissive two-photon carbon dots: Photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon 2021, 182, 155–166.
- 112 Chen, S.; Sun, T.; Zheng, M.; Xie, Z. Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Adv. Funct. Mater. 2020, 30, 2004680.
- 113 Pang, W.; Jiang, P.; Ding, S.; Bao, Z.; Wang, N.; Wang, H.; Qu, J.; Wang, D.; Gu, B.; Wei, X. Nucleolus-Targeted Photodynamic Anticancer Therapy Using Renal-Clearable Carbon Dots. Adv. Healthcare Mater. 2020, 9, 2000607.
- 114 Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.
- 115 Wu, X.; Yu, F.; Han, Y.; Jiang, L.; Li, Z.; Zhu, J.; Xu, Q.; Tedesco, A. C.; Zhang, J.; Bi, H. Enhanced chemodynamic and photoluminescence efficiencies of Fe–O4 coordinated carbon dots via the core–shell synergistic effect. Nanoscale 2023, 15, 376–386.
- 116 Liu, W.; Gu, H.; Liu, W.; Lv, C.; Du, J.; Fan, J.; Peng, X. NIR-emitting carbon dots for discriminative imaging and photo-inactivation of pathogenic bacteria. Chem. Eng. J. 2022, 450, 137384.
- 117 Li, Y.; Bai, G.; Zeng, S.; Hao, J. Theranostic Carbon Dots with Innovative NIR-II Emission for in vivo Renal-Excreted Optical Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2019, 11, 4737–4744.
- 118 Shen, Y.; Zhang, X.; Liang, L.; Yue, J.; Huang, D.; Xu, W.; Shi, W.; Liang, C.; Xu, S. Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon 2020, 156, 558–567.
- 119 Zhao, S.; Yan, L.; Cao, M.; Huang, L.; Yang, K.; Wu, S.; Lan, M.; Niu, G.; Zhang, W. Near-Infrared Light-Triggered Lysosome-Targetable Carbon Dots for Photothermal Therapy of Cancer. ACS Appl. Mater. Interfaces 2021, 13, 53610–53617.
- 120 Tian, B.; Liu, S.; Feng, L.; Liu, S.; Gai, S.; Dai, Y.; Xie, L.; Liu, B.; Yang, P.; Zhao, Y. Renal-Clearable Nickel-Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imaging-Guided Cancer Therapy in the Second Near-Infrared Biowindow. Adv. Funct. Mater. 2021, 31, 2100549.
- 121 Zhao, W.-B.; Chen, D.-D.; Liu, K.-K.; Wang, Y.; Zhou, R.; Song, S.-Y.; Li, F.-K.; Sui, L.-Z.; Lou, Q.; Hou, L.; Shan, C.-X. Near-infrared I/II emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy. Chem. Eng. J. 2023, 452, 139231.
- 122 Jiao, M.; Wang, Y.; Wang, W.; Zhou, X.; Xu, J.; Xing, Y.; Chen, L.; Zhang, Y.; Chen, M.; Xu, K.; Zheng, S. Gadolinium doped red-emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy. Chem. Eng. J. 2022, 440, 135965.
- 123 Yang, L.; Zhou, J.; Wang, Z.; Li, H.; Wang, K.; Liu, H.; Wu, F. Biocompatible conjugated porphyrin nanoparticles with photodynamic/ photothermal performances in cancer therapy. Dyes Pigm. 2020, 182, 108664.
- 124 Zhao, S.; Wu, S.; Jia, Q.; Huang, L.; Lan, M.; Wang, P.; Zhang, W. Lysosome-targetable carbon dots for highly efficient photothermal/ photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem. Eng. J. 2020, 388, 124212.
- 125 Bai, Y.; Zhao, J.; Wang, S.; Lin, T.; Ye, F.; Zhao, S. Carbon Dots with Absorption Red-Shifting for Two-Photon Fluorescence Imaging of Tumor Tissue pH and Synergistic Phototherapy. ACS Appl. Mater. Interfaces 2021, 13, 35365–35375.
- 126 Sun, S.; Chen, J.; Jiang, K.; Tang, Z.; Wang, Y.; Li, Z.; Liu, C.; Wu, A.; Lin, H. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803.
- 127 Zhang, L.; Yang, A.; Ruan, C.; Jiang, B.-P.; Guo, X.; Liang, H.; Kuo, W.-S.; Shen, X.-C. Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells. ACS Appl. Mater. Interfaces 2023, 15, 3253–3265.
- 128 Chen, T.; Yao, T.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S.; Wang, Z. An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals. Adv. Funct. Mater. 2021, 31, 2106079.
- 129 Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.-l.; Liu, H.-X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021, 11, 4839–4857.
- 130 Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.
- 131 Guo, J.; Wang, Y.; Zhao, M. Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy. Sens. Actuators, B 2019, 297, 126739.
- 132 Liu, M.; Huang, L.; Xu, X.; Wei, X.; Yang, X.; Li, X.; Wang, B.; Xu, Y.; Li, L.; Yang, Z. Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano 2022, 16, 9479–9497.
- 133 Nasrin, A.; Hassan, M.; Gomes, V. G. Two-photon active nucleus-targeting carbon dots: enhanced ROS generation and photodynamic therapy for oral cancer. Nanoscale 2020, 12, 20598–20603.
- 134 Chatterjee, A.; Sharma, A. K.; Purkayastha, P. Development of a carbon dot and methylene blue NIR-emitting FLIM-FRET pair in niosomes for controlled ROS generation. Nanoscale 2022, 14, 6570–6584.
- 135
Liu, C.; Fan, W.; Cheng, W.-X.; Gu, Y.; Chen, Y.; Zhou, W.; Yu, X.-F.; Chen, M.; Zhu, M.; Fan, K.; Luo, Q.-Y. Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Adv. Funct. Mater. 2023, n/a, 2213856.
10.1002/adfm.202213856 Google Scholar
- 136 Gao, W.; He, J.; Chen, L.; Meng, X.; Ma, Y.; Cheng, L.; Tu, K.; Gao, X.; Liu, C.; Zhang, M.; Fan, K.; Pang, D.-W.; Yan, X. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 2023, 14, 160.
- 137 Pan, T.; Chen, H.; Gao, X.; Wu, Z.; Ye, Y.; Shen, Y. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. J. Hazard. Mater. 2022, 435, 128996.
- 138 Yang, S.; Wang, X.; He, P.; Xu, A.; Wang, G.; Duan, J.; Shi, Y.; Ding, G. Graphene Quantum Dots with Pyrrole N and Pyridine N: Superior Reactive Oxygen Species Generation Efficiency for Metal-Free Sonodynamic Tumor Therapy. Small 2021, 17, 2004867.
- 139 Geng, B.; Xu, S.; Li, P.; Li, X.; Fang, F.; Pan, D.; Shen, L. Platinum Crosslinked Carbon Dot@TiO2−x p-n Junctions for Relapse-Free Sonodynamic Tumor Eradication via High-Yield ROS and GSH Depletion. Small 2022, 18, 2103528.
- 140 Li, H.; Guo, J.; Liu, A.; Chen, Y.; He, Y.; Qu, J.; Yan, W.; Song, J. Multi-Functional Carbon Dots for Visualizing and Modulating ROS-Induced Mitophagy in Living Cells. Adv. Funct. Mater. 2023, n/a, 2212141.
- 141 Calabrese, G.; De Luca, G.; Nocito, G.; Rizzo, M. G.; Lombardo, S. P.; Chisari, G.; Forte, S.; Sciuto, E. L.; Conoci, S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int. J. Mol. Sci. 2021, 22, 11783.
- 142 Ganguly, S.; Das, P.; Itzhaki, E.; Hadad, E.; Gedanken, A.; Margel, S. Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Appl. Mater. Interfaces 2020, 12, 51940–51951.
- 143 Hailing, Y.; Xiufang, L.; Lili, W.; Baoqiang, L.; Kaichen, H.; Yongquan, H.; Qianqian, Z.; Chaoming, M.; Xiaoshuai, R.; Rui, Z.; Hui, L.; Pengfei, P.; Hong, S. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale 2020, 12, 17222–17237.
- 144 Li, J.; Li, M.; Tian, L.; Qiu, Y.; Yu, Q.; Wang, X.; Guo, R.; He, Q. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int. J. Pharm. 2020, 578, 119122.
- 145 Ju, E.; Li, T.; Liu, Z.; da Silva, S. R.; Wei, S.; Zhang, X.; Wang, X.; Gao, S.-J. Specific Inhibition of Viral MicroRNAs by Carbon Dots-Mediated Delivery of Locked Nucleic Acids for Therapy of Virus-Induced Cancer. ACS Nano 2020, 14, 476–487.
- 146 Xu, Y.; Wang, B.; Zhang, M.; Zhang, J.; Li, Y.; Jia, P.; Zhang, H.; Duan, L.; Li, Y.; Li, Y.; Qu, X.; Wang, S.; Liu, D.; Zhou, W.; Zhao, H.; Zhang, H.; Chen, L.; An, X.; Lu, S.; Zhang, S. Carbon Dots as a Potential Therapeutic Agent for the Treatment of Cancer-Related Anemia. Adv. Mater. 2022, 34, e2200905.
- 147 Geng, B.; Hu, J.; Li, Y.; Feng, S.; Pan, D.; Feng, L.; Shen, L. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy. Nat. Commun. 2022, 13, 5735.
- 148 Liu, H.; Mo, L.; Chen, H.; Chen, C.; Wu, J.; Tang, Z.; Guo, Z.; Hu, C.; Liu, Z. Carbon Dots with Intrinsic Bioactivities for Photothermal Optical Coherence Tomography, Tumor-Specific Therapy and Postoperative Wound Management. Adv. Healthcare Mater. 2022, 11, 2101448.
- 149 Zhang, M.; Wang, W.; Wu, F.; Zheng, T.; Ashley, J.; Mohammadniaei, M.; Zhang, Q.; Wang, M.; Li, L.; Shen, J.; Sun, Y. Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy. Biomaterials 2020, 252, 120106.
- 150 Sun, S.; Chen, Q.; Tang, Z.; Liu, C.; Li, Z.; Wu, A.; Lin, H. Tumor Microenvironment Stimuli-Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon-Dot-Cu2+ Nanoassemblies. Angew. Chem. Int. Ed. 2020, 59, 21041–21048.
- 151 Su, W.; Tan, M.; Wang, Z.; Zhang, J.; Huang, W.; Song, H.; Wang, X.; Ran, H.; Gao, Y.; Nie, G.; Wang, H. Targeted Degradation of PD-L1 and Activation of the STING Pathway by Carbon-Dot-Based PROTACs for Cancer Immunotherapy. Angew. Chem. Int. Ed. 2023, n/a, e202218128.
Citing Literature
15 September, 2023
Pages 2354-2370