Description of Disperse Multiphase Processes: Quo Vadis?
Corresponding Author
Lena Hohl
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Correspondence: Lena Hohl ([email protected]), Robert P. Panckow ([email protected]), Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany.Search for more papers by this authorCorresponding Author
Robert P. Panckow
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Correspondence: Lena Hohl ([email protected]), Robert P. Panckow ([email protected]), Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany.Search for more papers by this authorJoschka M. Schulz
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorNico Jurtz
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorLutz Böhm
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorMatthias Kraume
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorCorresponding Author
Lena Hohl
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Correspondence: Lena Hohl ([email protected]), Robert P. Panckow ([email protected]), Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany.Search for more papers by this authorCorresponding Author
Robert P. Panckow
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Correspondence: Lena Hohl ([email protected]), Robert P. Panckow ([email protected]), Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany.Search for more papers by this authorJoschka M. Schulz
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorNico Jurtz
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorLutz Böhm
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorMatthias Kraume
Technische Universität Berlin, Chair of Chemical and Process Engineering, Ackerstraße 76, 13355 Berlin, Germany
Search for more papers by this authorAbstract
The experimental accessibility of disperse systems often is a critical factor when it comes to the development of modeling approaches that intend to converge towards an exact solution. Often, integral or pseudo-homogeneous values are used to reduce the complexity of the system, but a detailed single particle or interface analysis is crucial to understand relevant effects that also affect the swarm behavior. A high number of experimental techniques with respective limitations and advantages is available to quantify these effects. In this work, an overview on measurement techniques for momentum, heat and mass transfer in particle swarms as well as for the particle size distribution and interface characterization is provided. The industrial applicability is addressed by pointing out the vicinity to the process and the costs of different measurement techniques.
References
- 1 M. Kraume, Chem. Ing. Tech. 2013, 85 (10), 1499 – 1511. DOI: https://doi.org/10.1002/cite.201300013
- 2www.inprompt.tu-berlin.de/
- 3www.dfg-spp1740.de/
- 4 D. Stehl, L. Hohl, M. Schmidt, J. Hübner, M. Lehmann, M. Kraume, R. Schomäcker, R. von Klitzing, Chem. Ing. Tech. 2016, 88 (11), 1806 – 1814. DOI: https://doi.org/10.1002/cite.201600065
- 5 R. Von Klitzing et al., Adv. Mater. Interfaces 2016, 4 (1), 1600435. DOI: https://doi.org/10.1002/admi.201600435
- 6 L. Hohl, M. Kraume, Chem. Eng. Res. Des. 2018, 129, 89 – 101. DOI: https://doi.org/10.1016/j.cherd.2017.10.027
- 7 S. Maaß, J. Rojahn, R. Hänsch, M. Kraume, Comput. Chem. Eng. 2012, 45, 27 – 37. DOI: https://doi.org/10.1016/j.compchemeng.2012.05.014
- 8 M. Petzold, S. Röhl, L. Hohl, D. Stehl, M. Lehmann, R. von Klitzing, M. Kraume, Chem. Ing. Tech. 2017, 89 (11), 1561 – 1573. DOI: https://doi.org/10.1002/cite.20170006
- 9 G. Janiga, D. Stucht, R. Bordás, E. Temmel, A. Seidel-Morgenstern, D. Thévenin, O. Speck, Chem. Eng. Technol. 2017, 40 (7), 1370 – 1327. DOI: https://doi.org/10.1002/ceat.201700067
- 10 M. Zagajewski, A. Behr, P. Sasse, J. Wittmann, Chem. Eng. Sci. 2014, 115, 88 – 94. DOI: https://doi.org/10.1016/j.ces.2013.09.033
- 11 T. Pogrzeba, D. Müller, T. Hamerla, E. Esche, N. Paul, G. Wozny, R. Schomäcker, Ind. Eng. Chem. Res. 2015, 54 (48), 11953 – 11960. DOI: https://doi.org/10.1021/acs.iecr.5b01596
- 12 S. F. Hannigan et al., Chem. – Eur. J. 2017, 23 (34), 8212 – 8224. DOI: https://doi.org/10.1002/chem.201605926
- 13 D. Merker, L. Böhm, M. Oßberger, P. Klüfers, M. Kraume, Chem. Eng. Technol. 2017, 40 (8), 1391 – 1399. DOI: https://doi.org/10.1002/ceat.201600715
- 14 S. Kastens, J. Timmermann, F. Strassl, R. F. Rampmaier, A. Hoffmann, S. Herres-Pawlis, M. Schlüter, Chem. Eng. Technol. 2017, 40 (8), 1494 – 1501. DOI: https://doi.org/10.1002/ceat.201700047
- 15 M. W. Hlawitschka, P. Kováts, K. Zähringer, H. J. Bart, Chem. Eng. Sci. 2017, 170, 306 – 319. DOI: https://doi.org/10.1016/j.ces.2016.12.053
- 16 F. Strassl et al., Eur. J. Inorg. Chem. 2017, 2017 (27), 3350 – 3359. DOI: https://doi.org/10.1002/ejic.201700528
- 17 D. Ambrosini, P. Ferraro, Opt. Lasers Eng. 2018, 104, 1 – 8. DOI: https://doi.org/10.1016/j.optlaseng.2018.01.009
- 18 R. Kulkarni, P. Rastogi, Opt. Lasers Eng. 2016, 87, 1 – 17. DOI: https://doi.org/10.1016/j.optlaseng.2016.05.002.
- 19
H. G. Barth, R. B. Flippen, Anal. Chem.
1995, 67 (12), 257 – 272. DOI: https://doi.org/10.1021/ac00108a013
10.1021/ac00108a013 Google Scholar
- 20 V. S. V. Rajan, R. K. Ridley, K. G. Rata, J. Energy Res. Technol. 1993, 115, 151 – 161.
- 21 M. Schlüter, Chem. Ing. Tech. 2011, 83 (7), 992 – 1004. DOI: https://doi.org/10.1002/cite.201100039
- 22 P. Mavros, Chem. Eng. Res. Des. 2001, 79 (A2), 113 – 127.
- 23 G. Gouesbet, G. Gréhan, Int. J. Multiphase Flow 2015, 72, 288 – 297. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.07.001
- 24 S. Maaß, S. Wollny, A. Voigt, M. Kraume, Exp. Fluids 2010, 50 (2), 259 – 269. DOI: https://doi.org/10.1007/s00348-010-0918-9
- 25 R. N. Zare, Annu. Rev. Anal. Chem. 2012, 5 (1), 1 – 14. DOI: https://doi.org/10.1146/annurev-anchem-062011-143148
- 26 P. R. Gogate, A. B. Pandit, Biochem. Eng. J. 1999, 4, 7 – 15. DOI: https://doi.org/10.1016/S1369-703X(99)00033-9
- 27 T. J. Heindel, J. Fluids Eng. 2011, 133, 074001-1-074001-16. DOI: https://doi.org/10.1115/1.4004367
- 28 A. Javadi et al., Eur. Phys.: J. Spec. Top. 2013, 222 (1), 7 – 29. DOI: https://doi.org/10.1140/epjst/e2013-01822-3
- 29 M. Karbaschi, M. Taeibi Rahni, A. Javadi, C. L. Cronan, K. H. Schano, S. Faraji, J. Y. Won, J. K. Ferri, J. Krägel, R. Miller, Adv. Colloid Interface Sci. 2015, 222, 413 – 424. DOI: https://doi.org/10.1016/j.cis.2014.10.009
- 30
M. Raffel, C. E. Willert, S. T. Wereley, J. Kompenhans, Particle Image Velocimetry - A Practical Guide, Springer Verlag, Heidelberg
2007.
10.1007/978-3-540-72308-0 Google Scholar
- 31 N. Liu, W. Wang, J. Han, M. Zhang, P. Angeli, C. Wu, J. Gong, Chem. Eng. Sci. 2016, 152, 528 – 546. DOI: https://doi.org/10.1016/j.ces.2016.06.040
- 32 J. Timmermann, M. Hoffmann, M. Schlüter, Chem. Eng. Technol. 2016, 39 (10), 1955 – 1962. DOI: https://doi.org/10.1002/ceat.201600299
- 33 G. E. Elsinga, F. Scarano, B. Wieneke, B. W. Van Oudheusden, Exp. Fluids 2006, 41 (6), 933 – 947. DOI: https://doi.org/10.1007/s00348-006-0212-z
- 34 F. Scarano, Meas. Sci. Technol. 2013, 24 (1), 012001. DOI: https://doi.org/10.1088/0957-0233/24/1/012001
- 35 S. Hosokawa, A. Tomiyama, Exp. Fluids 2012, 52 (6), 1361 – 1372. DOI: https://doi.org/10.1007/s00348-011-1259-z
- 36 S. Hosokawa, T. Matsumoto, A. Tomiyama, Exp. Fluids 2013, 54 (6), 1538. DOI: https://doi.org/10.1007/s00348-013-1538-y
- 37 R. Budwig, Exp. Fluids 1994, 17 (5), 350 – 355. DOI: https://doi.org/10.1007/BF01874416
- 38 N. Reinecke, G. Petritsch, D. Schmitz, D. Mewes, Chem. Eng. Technol. 1998, 21 (1), 7 – 18.
- 39 W. Nitsche, A. Brunn, Strömungsmesstechnik, Springer Verlag, Berlin 2006.
- 40
N. I. Kolev, Multiphase Flow Dynamics 1: Fundamentals, 3rd ed., Springer Verlag, Berlin
2007.
10.1007/3-540-69833-7 Google Scholar
- 41 M. Jahanmiri, Particle Image Velocimetry: Fundamentals and Its Applications, Research report, Chalmers University of Technology, Göteborg 2011.
- 42 J. Coppeta, C. Rogers, Exp. Fluids 1998, 25 (1), 1 – 15. DOI: https://doi.org/10.1007/s003480050202
- 43 J. E. Coppeta, C. Rogers, J. Chem. Inf. Model. 1995, 53 (9), 1689 – 1699. DOI: https://doi.org/10.1017/CBO9781107415324.004
- 44 M. Henschke, L. H. Schlieper, A. Pfennig, Chem. Eng. J. 2002, 85, 369 – 378.
- 45 T. Frising, C. Noïk, C. Dalmazzone, J. Dispers. Sci. Technol. 2006, 27 (7), 1035 – 1057. DOI: https://doi.org/10.1080/01932690600767098
- 46 N. Kopriwa, A. Pfennig, Solvent Extr. Ion Exch. 2016, 34 (7), 622 – 642. DOI: https://doi.org/10.1080/07366299.2016.1244392
- 47 J. Kamp, J. Villwock, M. Kraume, Rev. Chem. Eng. 2016, 33 (1), 1 – 47. DOI: https://doi.org/10.1515/revce-2015-0071.
- 48 D. E. Hadjiev, C. De Recherche, Ind. Eng. Chem. Res. 2006, 45 (11), 3821 – 3829.
- 49 M. Li, D. Wilkinson, Chem. Eng. Sci. 2005, 60 (12), 3251 – 3265. DOI: https://doi.org/10.1016/j.ces.2005.01.008
- 50 R. P. Panckow, G. Comandè, S. Maaß, M. Kraume, Chem. Eng. Technol. 2015, 38 (11), 2011 – 2016. DOI: https://doi.org/10.1002/ceat.201500123
- 51 A. Ruf, J. Worlitschek, M. Mazzotti, Part. Part. Syst. Charact. 2000, 17 (4), 167 – 179. DOI: https://doi.org/10.1002/1521-4117(200012)17:4<167::AID-PPSC167>3.0.CO;2-T
- 52 J. Eggers, M. Kempkes, M. Mazzotti, Chem. Eng. Sci. 2008, 63 (22), 5513 – 5521. DOI: https://doi.org/10.1016/j.ces.2008.08.007
- 53 A. Shariff, J. Kangas, L. P. Coelho, S. Quinn, R. F. Murphy, J. Biomol. Screen. 2010, 15 (7), 726 – 734. DOI: https://doi.org/10.1177/1087057110370894
- 54 A. M. O'Rourke, P. F. MacLoughlin, Chem. Eng. Process. 2005, 44 (8), 885 – 894. DOI: https://doi.org/10.1016/j.cep.2004.10.001
- 55 M. I. I. Z. Abidin, A. A. A. Raman, M. I. M. Nor, Ind. Eng. Chem. Res. 2013, 52 (46), 16085 – 16094. DOI: https://doi.org/10.1021/ie401548z
- 56 A. M. Neumann, H. J. M. Kramer, Part. Part. Syst. Charact. 2002, 19, 17 – 27.
- 57
A. Dukhin, P. Goetz, T. Wines, P. Somasundaran, in Encyclopedic Handbook of Emulsion Technology (Ed: J. Sjoblom), Taylor and Francis, London
2001, 185 – 205. DOI: https://doi.org/10.1201/9781420029581.ch8
10.1201/9781420029581.ch8 Google Scholar
- 58 D. L. Marchisio, M. Soos, J. Sefcik, M. Morbidelli, A. A. Barresi, G. Baldi, Chem. Eng. Technol. 2006, 29 (2), 191 – 199. DOI: https://doi.org/10.1002/ceat.200500358
- 59 D. Ramkrishna, A. W. Mahoney, Chem. Eng. Sci. 2002, 57, 595 – 606. DOI: https://doi.org/10.1016/S0009-2509(01)00386-4
- 60 D. Ramkrishna, Population Balances Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego, CA 2000.
- 61 Y. Liao, D. Lucas, Chem. Eng. Sci. 2009, 64, 3389 – 3406. DOI: https://doi.org/10.1016/j.ces.2009.04.026
- 62 Y. Liao, D. Lucas, Chem. Eng. Sci. 2010, 65, 2851 – 2864. DOI: https://doi.org/10.1016/j.ces.2010.02.020
- 63 L. L. Coulaloglou, C. A. Tavlarides, Chem. Eng. Sci. 1977, 32, 1289 – 1297.
- 64 H. Bashiri, M. Heniche, F. Bertrand, J. Chaouki, Can. J. Chem. Eng. 2014, 92, 1070 – 1081. DOI: https://doi.org/10.1002/cjce.21955
- 65 J. Kamp, M. Kraume, Chem. Eng. Sci. 2015, 126, 132 – 142. DOI: https://doi.org/10.1016/j.ces.2014.11.045
- 66 J. Villwock, F. Gebauer, J. Kamp, H. J. Bart, M. Kraume, Chem. Eng. Technol. 2014, 37 (7), 1103 – 1111. DOI: https://doi.org/10.1002/ceat.201400180
- 67 S. N. Maindarkar, N. B. Raikar, P. Bongers, M. A. Henson, Colloids Surf., A 2012, 396, 63 – 73. DOI: https://doi.org/10.1016/j.colsurfa.2011.12.041
- 68 S. N. Maindarkar, H. Hoogland, M. A. Henson, Colloids Surf., A 2015, 467, 18 – 30. DOI: https://doi.org/10.1016/j.ces.2012.12.001
- 69 D. Zhang, N. G. Deen, J. A. M. Kuipers, Chem. Eng. Sci. 2006, 61 (23), 7593 – 7608. DOI: https://doi.org/10.1016/j.ces.2006.08.053
- 70 P. Chen, J. Sanyal, M. P. Duduković, Chem. Eng. Sci. 2005, 60 (4), 1085 – 1101. DOI: https://doi.org/10.1016/j.ces.2004.09.070
- 71 S. Nachtigall, D. Zedel, M. Kraume, Chin. J. Chem. Eng. 2016, 24 (2), 264 – 277. DOI: https://doi.org/10.1016/j.cjche.2015.06.003
- 72 J. Solsvik, H. A. Jakobsen, Chem. Eng. Sci. 2015, 131, 219 – 234. DOI: https://doi.org/10.1016/j.ces.2015.03.059
- 73 J. Fang, J. C. Godfrey, Z. Q. Mao, M. J. Slater, C. Gourdon, Chem. Eng. Technol. 1995, 18 (1), 41 – 48. DOI: https://doi.org/10.1002/ceat.270180109
- 74 S. Galinat, O. Masbernat, P. Guiraud, C. Dalmazzone, C. Noïk, Chem. Eng. Sci. 2005, 60 (23), 6511 – 6528. DOI: https://doi.org/10.1016/j.ces.2005.05.012
- 75 S. Galinat, F. Risso, O. Masbernat, P. Guiraud, J. Fluid Mech. 2007, 578, 85. DOI: https://doi.org/10.1017/S0022112007005186
- 76 F. Mighri, M. A. Huneault, J. Appl. Polym. Sci. 2006, 100 (4), 2582 – 2591. DOI: https://doi.org/10.1002/app.22744
- 77 R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops and Particles, Academic Press, San Francisco 1987.
- 78 M. Wegener, T. Eppinger, K. Bäumler, M. Kraume, A. R. Paschedag, E. Bänsch, Chem. Eng. Sci. 2009, 64 (23), 4835 – 4845. DOI: https://doi.org/10.1016/j.ces.2009.07.023
- 79 P. C. Kapur, D. Pande, D. W. Fuerstenau, Int. J. Miner. Process. 1997, 49 (3 – 4), 223 – 236. DOI: https://doi.org/10.1016/S0301-7516(96)00008-7
- 80 S. S. Narayanan, B. B. Lira, R. X. Rong, Coal Prep. 1988, 5 (3 – 4), 211 – 227. DOI: https://doi.org/10.1080/07349348808945566
- 81 M. Wulkow, A. Gerstlauer, U. Nieken, Chem. Eng. Sci. 2001, 56, 2575 – 2588. DOI: https://doi.org/10.1016/S0009-2509(00)00432-2
- 82 G. Févotte, Chem. Eng. Res. Des. 2007, 85 (7A), 906 – 920. DOI: https://doi.org/10.1205/cherd06229
- 83 J. Worlitschek, M. Mazzotti, Cryst. Growth Des. 2004, 4 (5), 891 – 903. DOI: https://doi.org/10.1021/cg034179b
- 84 L. Böhm, M. Brehmer, M. Kraume, Chem. Ing. Tech. 2016, 88 (1 – 2), 93 – 106. DOI: https://doi.org/10.1002/cite.201500105
- 85 J. Francois, N. Dietrich, P. Guiraud, A. Cockx, Chem. Eng. Sci. 2011, 66, 3328 – 3338. DOI: https://doi.org/10.1016/j.ces.2011.01.049
- 86 A. Dani, P. Guiraud, A. Cockx, Chem. Eng. Sci. 2007, 62 (24), 7245 – 7252. DOI: https://doi.org/10.1016/j.ces.2007.08.047
- 87 A. Amar, E. Groß-Hardt, A. A. Khrapitchev, S. Stapf, A. Pfennig, B. Blümich, J. Magn. Reson. 2005, 177 (1), 74 – 85. DOI: https://doi.org/10.1016/j.jmr.2005.07.014
- 88 E. H. Trinh, Rev. Sci. Instrum. 1985, 56, 2059 – 2065. DOI: https://doi.org/10.1063/1.1138419
- 89 A. L. Yarin, M. Pfaffenlehner, C. Tropea, J. Fluid Mech. 1998, 356, 65 – 91. DOI: https://doi.org/10.1017/S0022112097007829
- 90 D. Borosa, J. Brinkmann, S. Kareth, A. Kilzer, M. Petermann, Chem. Ing. Tech. 2014, 86 (5), 666 – 674. DOI: https://doi.org/10.1002/cite.201300150
- 91 R. Sahoo, Powder Technol. 2006, 161 (2), 158 – 167. DOI: https://doi.org/10.1016/j.powtec.2005.09.001
- 92 M. Eftekhardadkhah, G. Øye, Environ. Sci. Technol. 2013, 47 (24), 14154 – 14160. DOI: https://doi.org/10.1021/es403574g
- 93 J. Kamp, M. Kraume, Chem. Eng. Res. Des. 2014, 92 (4), 635 – 643. DOI: https://doi.org/10.1016/j.cherd.2013.12.023
- 94 T. Sanada, A. Sato, M. Shirota, M. Watanabe, Chem. Eng. Sci. 2009, 64 (11), 2659 – 2671. DOI: https://doi.org/10.1016/j.ces.2009.02.042
- 95 J. Lee, J. Pharm. Sci. 2003, 92 (10), 2057 – 2068.
- 96 D. Adityawarman, A. Voigt, P. Veit, K. Sundmacher, Chem. Eng. Sci. 2005, 60, 3373 – 3381. DOI: https://doi.org/10.1016/j.ces.2004.12.050
- 97 H. K. Kammler, L. Mädler, S. E. Pratsinis, Chem. Eng. Technol. 2001, 24 (6), 583 – 596. DOI: https://doi.org/10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H
- 98 C. Heffels, R. Polke, M. Rädle, B. Sachweh, M. Schäfer, N. Scholz, Part. Part. Syst. Charact. 1998, 15 (5), 211 – 218. DOI: https://doi.org/10.1002/(SICI)1521-4117(199810)15:5<211::AID-PPSC211>3.0.CO;2-H
- 99 E. J. Hukkanen, R. D. Braatz, Sens. Actuators, B 2003, 96 (1 – 2), 451 – 459. DOI: https://doi.org/10.1016/S0925-4005(03)00600-2
- 100 A. Pankewitz, C. Behrens, in Proc. of the 15th Int. Symp. on Industrial Crystallization, Associazione Italiana Di Ingegneria Chimica, Milan 2002, 1419 – 1424.
- 101 R. Miller, L. Liggieri, Bubble and Drop Interfaces, Koninklijke Brill NVKo, Leiden, The Netherlands 2011.
- 102
B. P. Binks, T. S. Horozov, Colloidal Particles at Liquid Interfaces, Cambridge University Press, Cambridge
2006.
10.1017/CBO9780511536670 Google Scholar
- 103
H.-D. Dörfler, Grenzflächen und Kolloid-Disperse Systeme: Physik und Chemie, Springer Verlag, Berlin
2002.
10.1007/978-3-642-15326-6 Google Scholar
- 104 S. N. Maindarkar, P. Bongers, M. A. Henson, Chem. Eng. Sci. 2013, 89, 102 – 114. DOI: https://doi.org/10.1016/j.ces.2012.12.001
- 105 Y. Tean, G. Holt, R. E. Apfel, J. Colloid Interface Sci. 1997, 187, 1 – 10.
- 106 J. Sjoblom, N. Aske, I. Harald, Ø. Brandal, T. Erik, Ø. Sæther, Adv. Colloid Interface Sci. 2003, 102, 399 – 473.
- 107 M. Petzold, S. Röhl, L. Hohl, D. Stehl, M. Lehmann, R. von Klitzing, M. Kraume, Chem. Ing. Tech. 2017, 89 (11), 1561 – 1573. DOI: https://doi.org/10.1002/cite.201700060
- 108 W. Ramsden, Proc. R. Soc. London, Ser. A. 1903, 72, 156 – 164.
- 109 S. U. Pickering, J. Chem. Soc., Trans. 1907, 91, 2001 – 2021.
- 110 A. B. Pawar, M. Caggioni, R. Ergun, R. W. Hartel, P. T. Spicer, Soft Matter 2011, 7, 7710 – 7716. DOI: https://doi.org/10.1039/c1sm05457k
- 111 E. Santini, F. Ravera, M. Ferrari, C. Stubenrauch, A. Makievski, J. Krägel, Colloids Surf., A 2007, 298, 12 – 21. DOI: https://doi.org/10.1016/j.colsurfa.2006.12.004
- 112 J. Krägel, S. R. Derkatch, Curr. Opin. Colloid Interface Sci. 2010, 15 (4), 246 – 255. DOI: https://doi.org/10.1016/j.cocis.2010.02.001
- 113 M. Karbaschi, M. Lotfi, J. Krägel, A. Javadi, D. Bastani, R. Miller, Curr. Opin. Colloid Interface Sci. 2014, 19 (6), 514 – 519. DOI: https://doi.org/10.1016/j.cocis.2014.08.003
- 114 M. Zanini, L. Isa, J. Phys.: Condens. Matter 2016, 53, 313002. DOI: https://doi.org/10.1017/CBO9781107415324.004
- 115 D. Tabor, R. H. S. Winterton, Proc. R. Soc., Ser. A 1969, 312 (1511), 435 – 450.
- 116 J. Israelachvili et al., Rep. Prog. Phys. 2010, 73 (3), 036601. DOI: https://doi.org/10.1088/0034-4885/73/3/036601
- 117 G. S. Settles, M. J. Hargather, Meas. Sci. Technol. 2017, 28, 042001. DOI: https://doi.org/10.1088/1361-6501/aa5748
- 118
G. S. Settles, Schlieren and Shadowgraph Techniques – Visualizing Phenomena in Transparent Media, Springer-Verlag, Berlin
2001.
10.1007/978-3-642-56640-0 Google Scholar
- 119 P. K. Panigrahi, K. Muralidhar, Imaging Heat and Mass Transfer Processes – Visualization and Analysis, Springer, New York 2013.
- 120 M. J. Hargather, G. S. Settles, Opt. Lasers Eng. 2012, 50 (1), 8 – 17. DOI: https://doi.org/10.1016/j.optlaseng.2011.05.012
- 121
A. Bürkholz, R. Polke, Part. Charact.
1984, 1, 153 – 160.
10.1002/ppsc.19840010126 Google Scholar
- 122 M. J. H. Simmons, S. H. Zaidi, B. J. Azzopardi, Opt. Eng. 2000, 39 (2), 505. DOI: https://doi.org/10.1117/1.602388
- 123 F. Lemoine, M. Wolff, M. Lebouche, Exp. Fluids 1996, 20 (5), 319 – 327. DOI: https://doi.org/10.1007/BF00191013
- 124 Y. Aizu, T. Asakura, Appl. Phys. B: Photophys. Laser Chem. 1987, 43 (4), 209 – 224.
- 125 Handbook of Industrial Mixing (Eds: E. L. Paul, V. A. Atiemo-obeng, S. M. Kresta), John Wiley & Sons, Hoboken 2004.
- 126 F. J. E. Svensson, A. Rasmuson, Chem. Eng. Technol. 2004, 27 (3), 335 – 339. DOI: https://doi.org/10.1002/ceat.200401981
- 127 N. Fdida, J. B. Blaisot, Meas. Sci. Technol. 2010, 21 (2), 025501. DOI: https://doi.org/10.1088/0957-0233/21/2/025501
- 128 J. Ritter, M. Kraume, Chem. Eng. Technol. 2000, 23 (7), 579 – 581. DOI: https://doi.org/10.1002/1521-4125(200007)23:7<579::AID-CEAT579>3.0.CO;2-Y
- 129 R. Angst, M. Kraume, Chem. Eng. Sci. 2006, 61, 2864 – 2870. DOI: https://doi.org/10.1016/j.ces.2005.11.046
- 130
R. P. Panckow, L. Reinecke, M. C. Cuellar, S. Maaß, Oil Gas Sci. Technol.
2017, 72 (3), 14. DOI: https://doi.org/10.2516/ogst/2017009
10.2516/ogst/2017009 Google Scholar
- 131 H. Aakre, T. Solbakken, R. B. Schüller, Flow Meas. Instrum. 2005, 16, 289 – 293. DOI: https://doi.org/10.1016/j.flowmeasinst.2005.03.004
- 132 E. Guevara-López, R. Sanjuan-Galindo, M. S. Córdova-Aguilar, G. Corkidi, G. Ascanio, E. Galindo, Chem. Eng. Res. Des. 2008, 86 (12), 1382 – 1387. DOI: https://doi.org/10.1016/j.cherd.2008.07.013
- 133 A.-M. Marbà-Ardébol, J. Emmerich, M. Muthig, P. Neubauer, S. Junne, Microb. Cell Fact. 2018, 17 (1), 73. DOI: https://doi.org/10.1186/s12934-018-0922-y
- 134 A. Lehwald, G. Janiga, D. Thevenin, K. Zähringer, Chem. Eng. Sci. 2012, 79, 8 – 18.
- 135 F. Gaitzsch, A. Gäbler, M. Kraume, Chem. Eng. Sci. 2011, 66 (20), 4663 – 4669. DOI: https://doi.org/10.1016/j.ces.2011.06.020
- 136 H.-M. Prasser, M. Misawa, I. Tiseanu, Flow Meas. Instrum. 2005, 16 (2), 73 – 83.
- 137 P. S. Denkova, S. Tcholakova, N. D. Denkov, K. D. Danov, B. Campbell, C. Shawl, D. Kim, Langmuir 2004, 20 (26), 11402 – 11413. DOI: https://doi.org/10.1021/la048649v
- 138 A. Barrabino, S. Keleşoğlu, G. H. Sørland, S. Simon, J. Sjöblom, Colloids Surf., A 2014, 443, 368 – 376. DOI: https://doi.org/10.1016/j.colsurfa.2013.11.016
- 139 F. De Luca, B. C. De Simone, B. Maraviglia, Magn. Reson. Imaging 1982, 1, 205 – 208. DOI: https://doi.org/10.1002/da.20417
- 140 M. Su, M. Xue, X. Cai, Z. Shang, F. Xu, Particuology 2008, 6 (4), 276 – 281. DOI: https://doi.org/10.1016/j.partic.2008.02.001
- 141 K. Niedzwiedz, H. Buggisch, N. Willenbacher, Rheol. Acta 2010, 49 (11), 1103 – 1116. DOI: https://doi.org/10.1007/s00397-010-0477-2
- 142 M. D. Torres, B. Hallmark, D. I. Wilson, Rheol. Acta 2015, 54 (6), 461 – 478. DOI: https://doi.org/10.1007/s00397-014-0832-9
- 143 G. S. Settles, M. J. Hargather, Meas. Sci. Technol. 2017, 28, 042001. DOI: https://doi.org/10.1088/1361-6501/aa5748
- 144 O. Posth et al., in Proc. of the 21st IMEKO World Congress 2015: Measurement in Research and Industry, Curran Associates, Red Hook, NY 2015.
- 145 M. Gradzielski, Curr. Opin. Colloid Interface Sci. 2008, 13, 263 – 269. DOI: https://doi.org/10.1016/j.cocis.2007.10.006
- 146 A. G. Kikhney, D. I. Svergun, FEBS Lett. 2015, 589 (19), 2570 – 2577. DOI: https://doi.org/10.1016/j.febslet.2015.08.027
- 147 J. Stetefeld, S. A. McKenna, T. R. Patel, Biophys. Rev. 2016, 8 (4), 409 – 427. DOI: https://doi.org/10.1007/s12551-016-0218-6
- 148 J. T. Norton, J. Appl. Phys. 1937, 8 (5), 307 – 312. DOI: https://doi.org/10.1063/1.1710298
- 149 J. Drelich, C. Fang, C. White, in Encyclopedia of Surface And Colloid Science (Ed: A. T. Hubbard), Marcel Dekker, New York 2002, 3152 – 3166.
- 150 A. Couper, R. Newton, C. Nunn, Colloid Polym. Sci. 1983, 261, 371 – 372. DOI: https://doi.org/10.1007/BF01413946
- 151 J. Viades-trejo, J. Gracia-Fadrique, Colloids Surf., A 2007, 302, 549 – 552. DOI: https://doi.org/10.1016/j.colsurfa.2007.03.033
- 152 A. T. Morita, D. J. Carastan, N. R. Demarquette, Colloid Polym. Sci. 2002, 280 (9), 857 – 864. DOI: https://doi.org/10.1007/s00396-002-0694-z
- 153 C. Walther, Colloids Surf., A 2003, 217 (1 – 3), 81 – 92. DOI: https://doi.org/10.1016/S0927-7757(02)00562-9
- 154 W. A. Ducker, T. J. Senden, R. M. Pashley, Langmuir 1992, 8 (7), 1831 – 1836. DOI: https://doi.org/10.1021/la00043a024
- 155 B. Ruozi, D. Belletti, A. Tombesi, G. Tosi, L. Bondioli, F. Forni, M. A. Vandelli, Int. J. Nanomed. 2011, 6, 557 – 563. DOI: https://doi.org/10.2147/IJN.S14615
- 156
D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, W. W. Webb, in Handbook of Biological Confocal Microscopy (Ed: J. B. Pawley), Springer, Boston, MA
1995, 39 – 53.
10.1007/978-1-4757-5348-6_3 Google Scholar
- 157 M. Marroquin, T. Bruce, J. Pellegrino, S. R. Wickramasinghe, S. M. Husson, J. Memb. Sci. 2011, 379 (1 – 2), 504 – 515. DOI: https://doi.org/10.1016/j.memsci.2011.06.024
- 158 C. Lopez, M. N. Pons, E. Morgenroth, Water Res. 2005, 39 (2 – 3), 456 – 468. DOI: https://doi.org/10.1016/j.watres.2004.10.009
- 159
H.-H. Perkampus, UV-VIS Spectroscopy and Its Applications, Springer Verlag, Berlin
1992.
10.1007/978-3-642-77477-5 Google Scholar
- 160
M. Hunger, J. Weitkamp, Angew. Chem., Int. Ed.
2001, 40, 2954 – 2971.
10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 161 C. Bonhomme, C. Coelho, N. Baccile, C. Gervais, T. Azaïs, F. Babonneau, Acc. Chem. Res. 2007, 40, 738 – 746.
- 162 R. G. Horn, D. T. Smith, W. Haller, Chem. Phys. Lett. 1989, 162 (4 – 5), 404 – 408. DOI: https://doi.org/10.1016/0009-2614(89)87066-6
- 163 S. Barman, G. F. Christopher, Langmuir 2014, 30, 9752 – 9760. DOI: https://doi.org/10.1021/la502329s
- 164 N. S. Kopriwa, Quantitative Beschreibung von Koaleszenzvorgängen in Extraktionskolonnen, Dissertation, RWTH Aachen 2013.
- 165 S. Nachtigall, Analyse der Tropfendeformation und des Tropfenbruchs in turbulenter Strömung, Doctoral Thesis, Technische Universtiät Berlin 2016.