Kinetics of Multi-Step Redox Processes by Time-Resolved In Situ X-ray Diffraction†
Lukas C. Buelens
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorCorresponding Author
Vladimir V. Galvita
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, BelgiumSearch for more papers by this authorHilde Poelman
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorChristophe Detavernier
Ghent University, Department of Solid State Sciences, Krijgslaan 281, S1, 9000 Ghent, Belgium.
Search for more papers by this authorGuy B. Marin
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorLukas C. Buelens
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorCorresponding Author
Vladimir V. Galvita
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, BelgiumSearch for more papers by this authorHilde Poelman
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorChristophe Detavernier
Ghent University, Department of Solid State Sciences, Krijgslaan 281, S1, 9000 Ghent, Belgium.
Search for more papers by this authorGuy B. Marin
Ghent University, Laboratory for Chemical Technology, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorDedicated to Prof. Dr.-Ing. Andreas Seidel-Morgenstern on the occasion of his 60th birthday
Abstract
The kinetics of redox reactions of iron oxide in oxygen carrier 50Fe2O3/MgAl2O4 are examined using different time-resolved techniques. Reduction kinetics are studied by H2 temperature-programmed reduction (H2-TPR) monitored by time-resolved in situ XRD. In contrast to conventional TPR, in situ XRD distinguishes the three-stage reduction of Fe2O3 → Fe3O4 → FeO → Fe. It also shows that the oxidation of Fe → Fe3O4 by CO2 has no intermediate crystalline phases, explaining why its kinetics can easily be investigated by conventional CO2 temperature-programmed oxidation (CO2-TPO). A shrinking core model which takes into account solid state diffusion allows describing the experimental data.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cite_201600057_sm_miscellaneous_information.pdf651.1 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 J. Blamey, E. J. Anthony, J. Wang, P. S. Fennell, Prog. Energy Combust. Sci. 2010, 36, 260 – 279.
- 2 L. Li, N. Zhao, W. Wei, Y. Sun, Fuel 2013, 108, 112 – 130.
- 3
H. J. Richter, K. F. Knoche, in Efficiency and Costing, ACS Symp. Ser., Vol. 235, ACS Publications, Washington, DC 1983, 71 – 85.
10.1021/bk-1983-0235.ch003 Google Scholar
- 4
L. S. Fan, Chemical Looping Systems for Fossil Energy Conversions, Wiley, Hoboken, NJ 2010.
10.1002/9780470872888 Google Scholar
- 5 M. Najera, R. Solunke, T. Gardner, G. Veser, Chem. Eng. Res. Des. 2011, 89, 1533 – 1543.
- 6 V. V. Galvita, H. Poelman, C. Detavernier, G. B. Marin, Appl. Catal., B 2015, 164, 184 – 191.
- 7 V. V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G. B. Marin, Ind. Eng. Chem. Res. 2013, 52, 8416 – 8426.
- 8 N. V. R. A. Dharanipragada, L. C. Buelens, H. Poelman, E. De Grave, V. V. Galvita, G. B. Marin, J. Mater. Chem. A 2015, 3, 16251 – 16262.
- 9 J. A. Rodriguez, J. Y. Kim, J. C. Hanson, M. Pérez, A. I. Frenkel, Catal. Lett. 2003, 85, 247 – 254.
- 10 M. Strach, R. C. Belin, J.-C. Richaud, J. Rogez, Inorg. Chem. 2014, 53, 12757 – 12766.
- 11 S. S. Farvid, P. V. Radovanovic, J. Am. Chem. Soc. 2012, 134, 7015 – 7024.
- 12 M. Behrens, R. Kiebach, J. Ophey, O. Riemenschneider, W. Bensch, Chem. – Eur. J. 2006, 12, 6348 – 6355.
- 13 J. S. O. Evans, S. J. Price, H.-V. Wong, D. O'Hare, J. Am. Chem. Soc. 1998, 120, 10837 – 10846.
- 14 A. M. Fogg, D. O'Hare, Chem. Mater. 1999, 11, 1771 – 1775.
- 15 K. Alexopoulos, M. Anilkumar, M.-F. Reyniers, H. Poelman, S. Cristol, V. Balcaen, P. M. Heynderickx, D. Poelman, G. B. Marin, Appl. Catal., B 2010, 97, 381 – 388.
- 16 W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, Appl. Catal., A 2007, 326, 17 – 27.
- 17 V. V. Galvita, H. Poelman, G. Rampelberg, B. De Schutter, C. Detavernier, G. B. Marin, Catal. Lett. 2012, 142, 959 – 968.
- 18 G. Rampelberg, B. De Schutter, W. Devulder, K. Martens, I. Radu, C. Detavernier, J. Mater. Chem. C 2015, 3, 11357 – 11365.
- 19 G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, 3 ed., Wiley, Hoboken, NJ 2011.
- 20 T. Melchiori, P. Canu, Ind. Eng. Chem. Res. 2013, 53, 8980 – 8995.
- 21 H. Kruggel-Emden, F. Stepanek, A. Munjiza, Chem. Eng. Res. Des. 2011, 89, 2714 – 2727.
- 22
W. E. Stewart, M. Caracotsios, Computer-aided modeling of reactive systems, Wiley, Hoboken, NJ 2008.
10.1002/9780470282038 Google Scholar
- 23 A. Pineau, N. Kanari, I. Gaballah, Thermochim. Acta 2006, 447, 89 – 100.
- 24 A. Pineau, N. Kanari, I. Gaballah, Thermochim. Acta 2007, 456, 75 – 88.
- 25 M. V. C. Sastri, R. P. Viswanath, B. Viswanathan, Int. J. Hydrogen Energy 1982, 7, 951 – 955.
- 26 V. Galvita, K. Sundmacher, J. Mater. Sci. 2007, 42, 9300 – 9307.
- 27 P. Heidebrecht, V. Galvita, K. Sundmacher, Chem. Eng. Sci. 2008, 63, 4776 – 4788.
- 28 M. J. Tiernan, P. A. Barnes, G. M. B. Parkes, J. Phys. Chem. B 2000, 105, 220 – 228.
- 29 H.-Y. Lin, Y.-W. Chen, C. Li, Thermochim. Acta 2003, 400, 61 – 67.
- 30 G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta 1997, 291, 171 – 177.
- 31 B. Hou, H. Zhang, H. Li, Q. Zhu, Chin. J. Chem. Eng. 2012, 20, 10 – 17.
- 32 N. A. Toropov, V. P. Barzakovskii, High-temperature chemistry of silicates and other oxide systems, 1 ed., Springer US, New York 1966.
- 33
A. R. Cooper, A. H. Heuer, Mass transport phenomena in ceramics, Plenum Press, New York 1975.
10.1007/978-1-4684-3150-6 Google Scholar
- 34 Ø. Johannesen, A. G. Andersen, Selected topics in high temperature chemistry: defect chemistry of solids, Elsevier, Amsterdam 1989.