Effective Hole Utilization for Atomically Dispersed Low-Coordination Molybdenum Accelerating Photocatalytic C─H Activation
Wangxi Liu
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorJingwen Jiang
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorDr. Zhonghua Li
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Bin Gao
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChanghao Liu
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorDr. Chen Liu
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Weichang Hao
School of Physics and Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorRongli Fan
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorJianming Liu
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorProf. Tao Yu
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorProf. Zhigang Zou
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaosheng Li
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWangxi Liu
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorJingwen Jiang
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorDr. Zhonghua Li
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Bin Gao
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChanghao Liu
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorDr. Chen Liu
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P.R. China
Search for more papers by this authorProf. Weichang Hao
School of Physics and Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191 P.R. China
Search for more papers by this authorRongli Fan
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorJianming Liu
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorProf. Tao Yu
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorProf. Zhigang Zou
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaosheng Li
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093 P.R. China
Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P.R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
Atomically dispersed low-coordination Mo on ultrathin ZnIn2S4 nanosheets has been successfully developed for acceptorless dehydrogenation of alcohols. The isolated Mo sites optimize the driving force of photogenerated holes, which greatly accelerates the electron transfer rate of the alkoxy C─H bonds, resulting in the formation of high-concentration alkyl radicals.
Abstract
Photocatalytic acceptorless dehydrogenation of alcohols offers a promising strategy to produce the corresponding carbonyl compounds and clean fuel H2. However, the sluggish kinetics of the alkoxy C─H bond cleavage attributes to the inefficient utilization of photogenerated holes greatly restricts the photocatalytic activity. Here we develmically dispersed low-coordination Mo on ultrathin ZnIn2S4 nanosheets that can greatly accelerate photocatalytic C─H activation. An internal quantum efficiency of 45.2% at 400 nm together with 99% benzaldehyde (BAD) selectivity is achieved using benzyl alcohol (BA) as a model substrate. Extensive experimental characterizations and theoretical calculations reveal that the low-coordination Mo tunes the local atomic configuration of highest occupied molecular orbital to trap holes produced under photoexcitation within picoseconds. Moreover, the incorporated site-specific Mo greatly improves the lifetime and diffusion length of photogenerated holes and optimizes the driving force of alkoxy C─H activation, which are responsible for the excellent performance. This work marks a significant stride to enhance the utilization efficiency of holes for promoting photocatalytic C─H activation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
anie202507312-sup-0001-SuppMat.docx11.1 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin, Chem. Rev. 2006, 106, 2943–2989.
- 2Z. Shen, Y. Hu, B. Li, Y. Zou, S. Li, G. W. Busser, X. Wang, G. Zhao, M. Muhler, J. Energy Chem. 2021, 62, 338–350.
- 3S. Najafishirtari, K. Friedel Ortega, M. Douthwaite, S. Pattisson, G. J. Hutchings, C. J. Bondue, K. Tschulik, D. Waffel, B. Peng, M. Deitermann, G. W. Busser, M. Muhler, M. Behrens, Chem. Eur. J. 2021, 27, 16809–16833.
- 4J. E. Nutting, K. Mao, S. S. Stahl, J. Am. Chem. Soc. 2021, 143, 10565–10570.
- 5A. Hinzmann, M. Stricker, J. Busch, S. Glinski, K. Oike, H. Gröger, Eur. J. Org. Chem. 2020, 2020, 2399–2408.
- 6B. Xu, J. P. Lumb, B. A. Arndtsen, Angew. Chem. Int. Ed. 2015, 127, 4282–4285.
- 7C. Liu, T. Li, X. Dai, J. Zhao, D. He, G. Li, B. Wang, X. Cui, J. Am. Chem. Soc. 2022, 144, 4913–4924.
- 8M. Trincado, J. Bösken, H. Grützmacher, Coordin. Chem. Rev. 2021, 443, 213967.
- 9H. Wang, H. Qi, X. Sun, S. Jia, X. Li, T. J. Miao, L. Xiong, S. Wang, X. Zhang, X. Liu, Nat. Mater. 2023, 22, 619–626.
- 10Q. Chen, B. Mao, Y. Liu, Y. Zhou, H. Huang, S. Wang, L. Li, W.-C. Yan, W. Shi, Z. Kang, Nat. Commun. 2024, 15, 8052.
- 11J. Wan, Y. Wang, J. Liu, R. Song, L. Liu, Y. Li, J. Li, J. Low, F. Fu, Y. Xiong, Adv. Mater. 2024, 36, 2405060.
- 12D. Gunawan, J. A. Yuwono, P. V. Kumar, A. Kaleem, M. P. Nielsen, M. J. Tayebjee, L. Oppong-Antwi, H. Wen, I. Kuschnerus, S. L. Chang, Appl. Catal. B Environ. 2023, 335, 122880.
- 13R. Tyburski, T. Liu, S. D. Glover, L. Hammarström, J. Am. Chem. Soc. 2021, 143, 560–576.
- 14C. Xu, Y. Pan, G. Wan, H. Liu, L. Wang, H. Zhou, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 2019, 141, 19110–19117.
- 15R. Lin, J. Wan, Y. Xiong, K. Wu, W.-c. Cheong, G. Zhou, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 9078–9082.
- 16Z.-X. Sun, K. Sun, M.-L. Gao, O. Metin, H.-L. Jiang, Angew. Chem. Int. Ed. 2022, 134, e202206108.
- 17N. N. Rosman, R. M. Yunus, N. R. A. M. Shah, R. M. Shah, K. Arifin, L. J. Minggu, N. A. yudin, Int. J. Energy Res. 2022, 46, 11596–11619.
- 18B.-H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K.-S. Lee, J. H. Kim, S.-P. Cho, Nat. Mater. 2019, 18, 620–626.
- 19Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y.-R. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, Nat. Catal. 2021, 4, 374–384.
- 20Y. Jin, C. Zhang, G. Zhang, Chinese J. Struct. Chem. 2024, 43, 100414.
- 21Z.-H. Xue, D. Luan, H. Zhang, X. W. D. Lou, Joule 2022, 6, 92–133.
- 22X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, J. Am. Chem. Soc. 2017, 139, 7586–7594.
- 23L. Valdman, V. Mazánek, P. Marvan, M. Serra, R. Arenal, Z. Sofer, Adv. Optical Mater. 2021, 9, 2100845.
- 24H. Jiang, L. Wang, H. Kaneko, R. Gu, G. Su, L. Li, J. Zhang, H. Song, F. Zhu, A. Yamaguchi, Nat. Catal. 2023, 6, 519–530.
- 25H. Martínez, D. F. Valezi, E. Di Mauro, E. A. Páez-Mozo, F. Martínez, Catal. Today 2022, 394–396, 50–61.
- 26Z. Shi, X. Zhang, X. Lin, G. Liu, C. Ling, S. Xi, B. Chen, Y. Ge, C. Tan, Z. Lai, Z. Huang, X. Ruan, L. Zhai, L. Li, Z. Li, X. Wang, G.-H. Nam, J. Liu, Q. He, Z. Guan, J. Wang, C.-S. Lee, A. R. J. Kucernak, H. Zhang, Nature 2023, 621, 300–305.
- 27C. Singhvi, G. Sharma, R. Verma, V. K. Paidi, P. Glatzel, P. Paciok, V. B. Patel, O. Mohan, V. Polshettiwar, Proc. Natl. Acad. Sci. USA 2025, 122, e2411406122.
- 28S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 2015, 115, 13051–13092.
- 29D. Jeong, H. Kim, J. Cho, J. Am. Chem. Soc. 2023, 145, 888–897.
- 30D. Prystupa, A. Anderson, B. Torrie, J. Raman Spectrosc. 1994, 25, 175–182.
- 31A. Waheed, C. Cao, Y. Zhang, K. Zheng, G. Li, New J. Chem. 2022, 46, 5361–5367.
- 32W. Liu, Y. Wang, H. Huang, J. Wang, G. He, J. Feng, T. Yu, Z. Li, Z. Zou, J. Am. Chem. Soc. 2023, 145, 7181–7189.
- 33L. Wang, Y. Sun, F. Zhang, J. Hu, W. Hu, S. Xie, Y. Wang, J. Feng, Y. Li, G. Wang, Adv. Mater. 2023, 35, 2205782.
- 34J. Lin, X. Wu, S. Xie, L. Chen, Q. Zhang, W. Deng, Y. Wang, ChemSusChem 2019, 12, 5023–5031.
- 35R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155–196.
- 36R. Marcus, J. Chem. Phys. 1956, 24, 966–978.
- 37Y. K. Petit, E. Mourad, C. Prehal, C. Leypold, A. Windischbacher, D. Mijailovic, C. Slugovc, S. M. Borisov, E. Zojer, S. Brutti, O. Fontaine, S. A. Freunberger, Nat. Chem. 2021, 13, 465–471.
- 38B. Li, M. T. Sougrati, G. Rousse, A. V. Morozov, R. Dedryvere, A. Iadecola, A. Senyshyn, L. Zhang, A. M. Abakumov, M.-L. Doublet, J.-M. Tarascon, Nat. Chem. 2021, 13, 1070–1080.
- 39S. Ahn, C. Zor, S. Yang, M. Lagnoni, D. Dewar, T. Nimmo, C. Chau, M. Jenkins, A. J. Kibler, A. Pateman, Nat. Chem. 2023, 15, 1022–1029.
- 40L. Yuan, L. Wang, A. R. Garrigues, L. Jiang, H. V. Annadata, M. A. Antonana, E. Barco, C. A. Nijhuis, Nat. Nanotechnol. 2018, 13, 322–329.
- 41A. Atxabal, T. Arnold, S. Parui, S. Hutsch, E. Zuccatti, R. Llopis, M. Cinchetti, F. Casanova, F. Ortmann, L. E. Hueso, Nat. Commun. 2019, 10, 2089.
- 42S. Dey, F. Masero, E. Brack, M. Fontecave, V. Mougel, Nature 2022, 607, 499–506.
- 43J. Wang, T. Ding, K. Gao, L. Wang, P. Zhou, K. Wu, Nat. Commun. 2021, 12, 6333.
- 44A. Y. Chan, A. Ghosh, J. T. Yarranton, J. Twilton, J. Jin, D. M. Arias-Rotondo, H. A. Sakai, J. K. McCusker, D. W. MacMillan, Science 2023, 382, 191–197.
- 45G. A. Parada, Z. K. Goldsmith, S. Kolmar, B. Pettersson Rimgard, B. Q. Mercado, L. Hammarström, S. Hammes-Schiffer, J. M. Mayer, Science 2019, 364, 471–475.
- 46R. Ihly, K. S. Mistry, A. J. Ferguson, T. T. Clikeman, B. W. Larson, O. Reid, O. V. Boltalina, S. H. Strauss, G. Rumbles, J. L. Blackburn, Nat. Chem. 2016, 8, 603–609.
- 47A. Ghosh, J. T. Yarranton, J. K. McCusker, Nat. Chem. 2024, 16, 1665–1672.
- 48C. Wang, H. Li, T. H. Burgin, O. S. Wenger, Nat. Chem. 2024, 16, 1151–1159.
- 49J. H. Olshansky, T. X. Ding, Y. V. Lee, S. R. Leone, A. P. Alivisatos, J. Am. Chem. Soc. 2015, 137, 15567–15575.
- 50M. J. Turnbull, Y. M. Yiu, M. Goldman, T.-K. Sham, Z. Ding, ACS Appl. Mater. Interfaces 2022, 14, 32683–32695.
- 51B. Wu, Y. Lyu, W. Chen, J. Zheng, H. Zhou, R. De Marco, N. Tsud, K. C. Prince, V. Kalinovych, B. Johannessen, JACS Au 2023, 3, 592–602.
- 52E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066–3072.
- 53J. Ma, T. J. Miao, J. Tang, Chem. Soc. Rev. 2022, 51, 5777–5794.
- 54C. Bie, B. Zhu, L. Wang, H. Yu, C. Jiang, T. Chen, J. Yu, Angew. Chem. Int. Ed. 2022, 61, e202212045.
- 55M. Hojamberdiev, Y. Cai, J. J. M. Vequizo, M. M. Khan, R. Vargas, K. Yubuta, A. Yamakata, K. Teshima, M. Hasegawa, Green Chem. 2018, 20, 3845–3856.
- 56R. Verma, G. Sharma, V. Polshettiwar, Nat. Commun. 2024, 15, 7974.
- 57X. Liu, E. Wang, M. Zhou, Y. Wan, Y. Zhang, H. Liu, Y. Zhao, J. Li, Y. Gao, Y. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202207685.
- 58H. Ou, Y. Qian, L. Yuan, H. Li, L. Zhang, S. Chen, M. Zhou, G. Yang, D. Wang, Y. Wang, Adv. Mater. 2023, 35, 2305077.
- 59X. Cao, A. Huang, C. Liang, H.-C. Chen, T. Han, R. Lin, Q. Peng, Z. Zhuang, R. Shen, H. M. Chen, J. Am. Chem. Soc. 2022, 144, 3386–3397.
- 60S. Xie, Z. Shen, J. Deng, P. Guo, Q. Zhang, H. Zhang, C. Ma, Z. Jiang, J. Cheng, D. Deng, Nat. Commun. 2018, 9, 1181.