A Superstrong and Reversible Ionic Crystal-Based Adhesive Inspired by Ice Adhesion
Lili Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorZiyang Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorYongyuan Ren
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorXiuyang Zou
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorWansu Peng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeizheng Li
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYiqing Wu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorSijie Zheng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoliang Wang
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Feng Yan
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorLili Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorZiyang Liu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorYongyuan Ren
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorXiuyang Zou
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorWansu Peng
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeizheng Li
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYiqing Wu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorSijie Zheng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoliang Wang
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Feng Yan
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Search for more papers by this authorGraphical Abstract
Inspired by reversible ice adhesion, a reversible ionic crystal (IC) based gel adhesive was prepared, which showed superstrong and reversible adhesion due to the phase transition of ICs. In addition, the reversible adhesion can be adjusted by heating and light, and be effectively monitored by resistance and capacitance.
Abstract
In this study, we developed a superstrong and reversible adhesive, which can possess a high bonding strength in the “adhesive” state and detach with the application of heating. An ionic crystal (IC) gel, in which an IC was immobilized within a soft-polymer matrix, were synthesized via in situ photo-crosslinking of a precursor solution composed of N, N-dimethyl acrylamide (DMAA) and a melted IC. The obtained IC gel is homogenous and transparent at melt point. When cooled to the phase transition temperature of the IC, the gel turns into the adhesive with the adhesion strength of 5.82 MPa (on glasses), due to the excellent wetting of melted gel and a thin layer of crystalline IC with high cohesive strength formed on the substrates. The synergistic effects between IC, polymer networks and substrates were investigated by solid state 1H NMR and molecular dynamics simulation. Such an adhesive layer is reversable and can be detached by heating and subsequent re-adhesion via cooling. This study proposed the new design of removable adhesives, which can be used in dynamic and complex environments.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202100984-sup-0001-misc_information.pdf1.6 MB | Supplementary |
anie202100984-sup-0001-Movie_S1.avi3.7 MB | Supplementary |
anie202100984-sup-0001-Movie_S2.avi7.4 MB | Supplementary |
anie202100984-sup-0001-Movie_S3.avi1.8 MB | Supplementary |
anie202100984-sup-0001-Movie_S4.avi8.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Beharaj, E. Z. McCaslin, W. A. Blessing, M. W. Grinstaff, Nat. Commun. 2019, 10, 5478;
- 1bY. Zhou, M. Chen, Q. Ban, Z. Zhang, S. Shuang, K. Koynov, H.-J. Butt, J. Kong, S. Wu, ACS Macro Lett. 2019, 8, 968;
- 1cJ. Yang, R. Bai, B. Chen, Z. Suo, Adv. Funct. Mater. 2020, 30, 1901693;
- 1dL. Montero de Espinosa, W. Meesorn, D. Moatsou, C. Weder, Chem. Rev. 2017, 117, 12851.
- 2
- 2aC. Wang, W. Zhang, A. Siva, D. Tiea, K. J. Wynne, Langmuir 2014, 30, 540;
- 2bS. A. Kulinich, M. Farzaneh, Langmuir 2009, 25, 8854.
- 3M. Susoff, K. Siegmann, C. Pfaffenroth, M. Hirayama, Appl. Surf. Sci. 2013, 282, 870.
- 4
- 4aZ. Wu, C. Ji, X. Zhao, Y. Han, K. Mullen, K. Pan, M. Yin, J. Am. Chem. Soc. 2019, 141, 7385;
- 4bZ. Wang, L. Guo, H. Xiao, H. Cong, S. Wang, Mater. Horiz. 2020, 7, 282;
- 4cF. Chen, Y. Ren, J. Guo, F. Yan, Chem. Commun. 2017, 53, 1595.
- 5
- 5aW. Zhang, R. Wang, Z. Sun, X. Zhu, Q. Zhao, T. Zhang, A. Cholewinski, F. K. Yang, B. Zhao, R. Pinnaratip, P. K. Forooshani, B. P. Lee, Chem. Soc. Rev. 2020, 49, 433;
- 5bW. Li, X. Liu, Z. Deng, Y. Chen, Q. Yu, W. Tang, T. L. Sun, Y. S. Zhang, K. Yue, Adv. Mater. 2019, 31, 1904732;
- 5cJ. Liu, C. S. Y. Tan, O. A. Scherman, Angew. Chem. Int. Ed. 2018, 57, 8854; Angew. Chem. 2018, 130, 8992;
- 5dS. Arias, S. Amini, J. Horsch, M. Pretzler, A. Rompel, I. Melnyk, D. Sychev, A. Fery, H. G. Borner, Angew. Chem. Int. Ed. 2020, 59, 18495; Angew. Chem. 2020, 132, 18653;
- 5eS. Lamping, T. Otremba, B. J. Ravoo, Angew. Chem. Int. Ed. 2018, 57, 2474; Angew. Chem. 2018, 130, 2499;
- 5fT. Utzig, P. Stock, M. Valtiner, Angew. Chem. Int. Ed. 2016, 55, 9524; Angew. Chem. 2016, 128, 9676.
- 6
- 6aH. Akiyama, M. Yoshida, Adv. Mater. 2012, 24, 2353;
- 6bS. Ito, A. Yamashita, H. Akiyama, H. Kihara, M. Yoshida, Macromolecules 2018, 51, 3243;
- 6cY. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, E. Koyama, R. Azumi, H. Akiyama, H. Kihara, M. Yoshida, Org. Lett. 2014, 16, 5012.
- 7
- 7aQ. Zhang, T. Li, A. Duan, S. Dong, W. Zhao, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 8058;
- 7bS. Dong, J. Leng, Y. Feng, M. Liu, C. J. Stackhouse, A. Schonhals, L. Chiappisi, L. Gao, W. Chen, J. Shang, L. Jin, Z. Qi, C. A. Schalley, Sci. Adv. 2017, 3, eaao0900.
- 8
- 8aD. Tan, X. Wang, Q. Liu, K. Shi, B. Yang, S. Liu, Z. S. Wu, L. Xue, Small 2019, 15, 1904248;
- 8bH. Lee, B. P. Lee, P. B. Messersmith, Nature 2007, 448, 338.
- 9
- 9aD. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232;
- 9bY. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, Sci. Adv. 2019, 5, eaax0648;
- 9cW. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 2017, 46, 1124;
- 9dJ. Lu, F. Yan, J. Texter, Prog. Polym. Sci. 2009, 34, 431.
- 10
- 10aX. Yang, G. Liu, L. Peng, J. Guo, L. Tao, J. Yuan, C. Chang, Y. Wei, L. Zhang, Adv. Funct. Mater. 2017, 27, 1703174;
- 10bH. Wang, Z. Li, Y. Liu, X. Zhang, S. Zhang, Green Chem. 2009, 11, 1568;
- 10cZ. Liu, Y. Wang, Y. Ren, G. Jin, C. Zhang, W. Chen, F. Yan, Mater. Horiz. 2020, 7, 919;
- 10dX. Hou, Z. Wang, Z. Zheng, J. Guo, Z. Sun, F. Yan, ACS Appl. Mater. Interfaces 2019, 11, 20417;
- 10eS. Y. Zhang, H. Miao, H. M. Zhang, J. H. Zhou, Q. Zhuang, Y. J. Zeng, Z. Gao, J. Yuan, J. K. Sun, Angew. Chem. Int. Ed. 2020, 59, 22109; Angew. Chem. 2020, 132, 22293.
- 11
- 11aT. Zhou, X. Gao, B. Dong, N. Sun, L. Zheng, J. Mater. Chem. A 2016, 4, 1112;
- 11bD. Xu, J. Guo, F. Yan, Prog. Polym. Sci. 2018, 79, 121.
- 12
- 12aH. Y. Lee, Y. Cai, S. Velioglu, C. Mu, C. J. Chang, Y. L. Chen, Y. Song, J. W. Chew, X. M. Hu, Chem. Mater. 2017, 29, 6947;
- 12bM. P. Singh, R. K. Singh, S. Chandra, Prog. Mater. Sci. 2014, 64, 73.
- 13K. Saalwachter, Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 1.
- 14
- 14aR. Zhang, T. Yan, B.-D. Lechner, K. Schröter, Y. Liang, B. Li, F. Furtado, P. Sun, K. Saalwächter, Macromolecules 2013, 46, 1841;
- 14bR. Zhang, S. Yu, S. Chen, Q. Wu, T. Chen, P. Sun, B. Li, D. Ding, J. Phys. Chem. B 2014, 118, 1126;
- 14cS. Chen, G. Wu, X. Wang, X. Chen, P. Nealey, ACS Appl. Polym. Mater. 2020, 2, 427;
- 14dY. Gao, R. C. Zhang, W. F. Lv, Q. J. Liu, X. L. Wang, P. C. Sun, H. H. Winter, G. Xue, J. Phys. Chem. C 2014, 118, 5606.
- 15J. Lee, M. W. M. Tan, K. Parida, G. Thangavel, S. A. Park, T. Park, P. S. Lee, Adv. Mater. 2020, 32, e1906679.
- 16S. Saito, S. Nobusue, E. Tsuzaka, C. Yuan, C. Mori, M. Hara, T. Seki, C. Camacho, S. Irle, S. Yamaguchi, Nat. Commun. 2016, 7, 12094.
- 17G. Lu, W. Hong, L. Tong, H. Bai, Y. Wei, G. Shi, ACS Nano 2008, 2, 2342.
- 18X. Li, J. Lai, Y. Deng, J. Song, G. Zhao, S. Dong, J. Am. Chem. Soc. 2020, 142, 21522.
- 19Y. Wang, S. Li, W. Yao, H. Chen, W. Guo, Mater. Res. Express 2019, 6, 055319.
- 20J. Eisenhaure, S. Kim, Polymers 2014, 6, 2274.
- 21C. Cui, C. Fan, Y. Wu, M. Xiao, T. Wu, D. Zhang, X. Chen, B. Liu, Z. Xu, B. Qu, W. Liu, Adv. Mater. 2019, 31, 1905761.
- 22X. Li, Y. Deng, J. Lai, G. Zhao, S. Dong, J. Am. Chem. Soc. 2020, 142, 5371.
- 23
- 23aZ. Ren, R. Guo, H. Bi, X. Jia, M. Xu, L. Cai, ACS Appl. Mater. Interfaces 2020, 12, 3236;
- 23bH. Nakatani, K. Iwakura, M. Hamadate, N. Okazaki, M. Aoyama, M. Terano, J. Appl. Polym. Sci. 2011, 122, 2798.
- 24K. Dong, S. Zhang, Chem. Eur. J. 2012, 18, 2748.