Phenolic compounds, amino acid profiles, and antibacterial properties of kefir prepared using freeze-dried Arbutus unedo L. and Tamarindus indica L. fruits and sweetened with stevia, monk fruit sweetener, and aspartame
Corresponding Author
Zeynep Ece Kulaksız Günaydı
Department of Food Engineering, Sakarya University, Sakarya, Turkey
Correspondence
Zeynep Ece Kulaksız Günaydı, Department of Food Engineering, Sakarya University, Sakarya 54187, Turkey.
Email: [email protected]
Search for more papers by this authorAhmet Ayar
Department of Food Engineering, Sakarya University, Sakarya, Turkey
Search for more papers by this authorCorresponding Author
Zeynep Ece Kulaksız Günaydı
Department of Food Engineering, Sakarya University, Sakarya, Turkey
Correspondence
Zeynep Ece Kulaksız Günaydı, Department of Food Engineering, Sakarya University, Sakarya 54187, Turkey.
Email: [email protected]
Search for more papers by this authorAhmet Ayar
Department of Food Engineering, Sakarya University, Sakarya, Turkey
Search for more papers by this authorAbstract
This study attempts to investigate physicochemical and antibacterial properties of kefir enriched with freeze-dried Arbutus unedo L. and Tamarindus indica L. fruits and sweetened using stevia, monk fruit sweetener, aspartame, and sucrose (beet and cane sugar). Based on the findings of the study, the pH values of kefir decreased with the addition of fruits. The lowest syneresis and the highest dry matter values were found in the samples with sucrose. 15 phenolic compounds and 31 amino acids were detected using LC–MS/MS. The major phenolic components of the samples added with Arbutus unedo L. and Tamarindus indica L. fruits were gallic acid and syringic acid, respectively. Only gallic, protocatechuic, salicylic, and caffeic acids were detected in the control sample (C1). The primary amino acids were l-proline, l-glutamic acid, and l-valine, respectively. Kefir and fruit samples demonstrated antibacterial effect against Bacillus cereus, Staphylococcus aureus, and Escherichia coli.
Novelty impact statement
- Freeze-dried Arbutus unedo L. and Tamarindus indica L. fruits were used in kefir sweetened with various sweeteners.
- The syneresis values of kefir samples decreased with the addition of freeze-dried fruits.
- 15 phenolic compounds and 31 amino acids were detected in kefir samples by using LC–MS/MS.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Aloğlu, H. Ş., Gökgöz, Y., & Bayraktar, M. (2018). Strawberry tree fruits (Arbutus unedo L) ice cream production, investigation of physical, chemical and sensorial parameters. GIDA-the Journal of Food, 43, 1030–1039. https://doi.org/10.15237/gida.GD18098
10.15237/gida.GD18098 Google Scholar
- AOAC. (1998). Official methods of analysis of AOAC international ( 16th ed.). AOAC International.
- AOAC. (2005). Official methods of analysis of AOAC international ( 18th ed.). AOAC International.
- Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5, 27540–27557. https://doi.org/10.1039/C5RA01911G
- Bachmetov, L., Gal-Tanamy, M., Shapira, A., Vorobeychik, M., Giterman-Galam, T., Sathiyamoorthy, P., Golan-Goldhirsh, A., Benhar, I., Tur-Kaspa, R., & Zemel, R. (2011). Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. Journal of Viral Hepatitis, 19(2), e81–e88. https://doi.org/10.1111/j.1365-2893.2011.01507.x.
- Ban, Q., Liu, Z., Yu, C., Sun, X., Jiang, Y., Cheng, J., & Guo, M. (2020). Physiochemical, rheological, microstructural, and antioxidant properties of yogurt using monk fruit extract as a sweetener. Journal of Dairy Science, 103, 10006–10014. https://doi.org/10.3168/jds.2020-18703
- Barukčić, I., Gracin, L., Režek Jambrak, A., & Božanić, R. (2017). Comparison of chemical, rheological and sensory properties of kefir produced by kefir grains and commercial kefir starter. Mljekarstvo: časopis Za unaprjeđenje Proizvodnje i Prerade Mlijeka, 67, 169–176. https://doi.org/10.15567/mljekarstvo.2017.0301
- Bayram, N. E., Canlı, D., Gerçek, Y. C., Bayram, S., Çelik, S., Güzel, F., Morgil, H., & Oz, G. C. (2020). Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. Journal of Food & Nutrition Research, 59, 311–322.
- Bayram, N. E., Gercek, Y. C., Çelik, S., Mayda, N., Kostić, A. Ž., Dramićanin, A. M., & Özkök, A. (2021). Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin–similarities and differences. Arabian Journal of Chemistry, 14, 103004. https://doi.org/10.1016/j.arabjc.2021.103004
- Beirami-Serizkani, F., Hojjati, M., & Jooyandeh, H. (2021). The effect of microbial transglutaminase enzyme and Persian gum on the characteristics of traditional kefir drink. International Dairy Journal, 112, 104843. https://doi.org/10.1016/j.idairyj.2020.104843
- Beltrami, M. C., Doring, T., & Lindner, J. D. (2018). Sweeteners and sweet taste enhancers in the food industry. Food Science and Technology, 38, 181–187. https://doi.org/10.1590/fst.31117
- Booth, A., Amen, R. J., Scott, M., & Greenway, F. L. (2010). Oral dose-ranging developmental toxicity study of an herbal supplement (NT) and gallic acid in rats. Advances in Therapy, 27(4), 250–255. https://doi.org/10.1007/s12325-010-0021-x
- Cetin-Karaca, H., & Newman, M. C. (2015). Antimicrobial efficacy of plant phenolic compounds against salmonella and Escherichia Coli. Food Bioscience, 11, 8–16. https://doi.org/10.1016/j.fbio.2015.03.002
- Chao, J., Huo, T. I., Cheng, H. Y., Tsai, J. C., Liao, J. W., Lee, M. S., Qin, X. M., Hsieh, M. T., Pao, L. H., & Peng, W. H. (2014). Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One, 9(2), e96969. https://doi.org/10.1371/journal.pone.0096969
- Chen, L. Y., Huang, C. N., Liao, C. K., Chang, H. M., Kuan, Y. H., Tseng, T. J., Yen, K. J., Yang, K. L., & Lin, H. C. (2020). Effects of Rutin on wound healing in hyperglycemic rats. Antioxidants, 9(11), 1122. https://doi.org/10.3390/antiox9111122
- Codex Alimentarius Commission (2003). Codex standard for fermented milks. Codex Stan 243–2003, 11. www.fao.org/input/download/standards/400/CXS_243e.pdf
- Costa, G. M., Paula, M. M., Barão, C. E., Klososki, S. J., Bonafé, E. G., Visentainer, J. V., Cruz, A. G., & Pimentel, T. C. (2019). Yoghurt added with lactobacillus casei and sweetened with natural sweeteners and/or prebiotics: Implications on quality parameters and probiotic survival. International Dairy Journal, 97, 139–148. https://doi.org/10.1016/j.idairyj.2019.05.007
- Derosa, G., Maffioli, P., D’Angelo, A., Preti, P. S., Tenore, G., & Novellino, E. (2020). Abscisic acid treatment in patients with prediabetes. Nutrients, 12(10), 2931. https://doi.org/10.3390/nu12102931
- Du, X., & Myracle, A. D. (2018). Development and evaluation of kefir products made with aronia or elderberry juice: Sensory and phytochemical characteristics. International Food Research Journal, 25, 1373–1383.
- Durmuş, N., Çapanoğlu, E., & Kılıç-Akyılmaz, M. (2021). Activity and bioaccessibility of antioxidants in yoghurt enriched with black mulberry as affected by fermentation and stage of fruit addition. International Dairy Journal, 117, 105018. https://doi.org/10.1016/j.idairyj.2021.105018
- Ergin, F., Gülsüm, Ö. Z., Özmen, Ü., Erdal, Ş., Çavana, E., & Küçükçetin, A. (2017). Sütün homojenizasyonunun kefirin fizikokimyasal ve mikrobiyolojik özellikleri üzerine etkisi. Akademik Gıda, 15, 368–376. https://doi.org/10.24323/akademik-gida.370105
10.24323/akademik?gida.370105 Google Scholar
- Ertekin, B., & Güzel-Seydim, Z. B. (2010). Effect of fat replacers on kefir quality. Journal of the Science of Food and Agriculture, 90, 543–548. https://doi.org/10.1002/jsfa.3855
- FDA (U.S. Food and Drug Administration). (2018). Additional information about high-intensity sweeteners permitted for use in food in the United States. Retrieved from: https://www.fda.gov/food/food-additives-petitions/additional-information-about-high-intensity-sweeteners-permitted-use-food-united-states
- Ganesan, S., Faris, A. N., Comstock, A. T., Wang, Q., Nanua, S., Hershenson, M. B., & Sajjan, U. S. (2012). Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Research, 94(3), 258–271. https://doi.org/10.1016/j.antiviral.2012.03.005
- Gao, Y., Tian, R., Liu, H., Xue, H., Zhang, R., Han, S., Ji, L., Huang, W., Zhan, J., & You, Y. (2021). Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Critical Reviews in Food Science and Nutrition, 18, 1–23. https://doi.org/10.1080/10408398.2021.1939265
- García-Burgos, M., Moreno-Fernandez, J., Alférez, M. J. M., Díaz-Castro, J., & López-Aliaga, I. (2020). New perspectives in fermented dairy products and their health relevance. Journal of Functional Foods, 72, 104059. https://doi.org/10.1016/j.jff.2020.104059
- Godse, S., Mohan, M., Kasture, V., & Kasture, S. (2010). Effect of myricetin on blood pressure and metabolic alterations in fructose hypertensive rats. Pharmaceutical Biology, 48(5), 494–498. https://doi.org/10.3109/13880200903188526
- Grønnevik, H., Falstad, M., & Narvhus, J. A. (2011). Microbiological and chemical properties of Norwegian kefir during storage. International Dairy Journal, 21, 601–606. https://doi.org/10.1016/j.idairyj.2011.01.001
- Güler, Z., Tekin, A., & Park, Y. W. (2016). Comparison of biochemical changes in kefirs produced from organic and conventional milk at different inoculation rates of kefir grains. Journal of Food Science and Nutrition Therapy, 2, 8–14.
10.17352/jfsnt.000003 Google Scholar
- Gündoğdu, M., Ercisli, S., Canan, I., Orman, E., Sameeullah, M., Naeem, M., & Ayed, R. B. (2018). Diversity in phenolic compounds, biochemical and pomological characteristics of Arbutus unedo fruits. Folia Horticulturae, 30, 139–146. https://doi.org/10.2478/fhort-2018-0014
- Hamacek, F. R., Santos, P. R. G., de Morais Cardoso, L., & Pinheiro-Sant’Ana, H. M. (2013). Nutritional composition of tamarind (Tamarindus indica L.) from the Cerrado of Minas Gerais. Brazil. Fruits, 68, 381–395. https://doi.org/10.1051/fruits/2013083
- Imani, A., Maleki, N., Bohlouli, S., Kouhsoltani, M., Sharifi, S., & Maleki Dizaj, S. (2020). Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research, 35(3), 2500-2513. https://doi.org/10.1002/ptr.6977
- Jiang, M., Zhu, M., Wang, L., & Yu, S. (2019). Anti-tumor effects and associated molecular mechanisms of myricetin. Biomedicine & Pharmacotherapy, 120, 109506. https://doi.org/10.1016/j.biopha.2019.109506
- Kaewmool, C., Kongtawelert, P., Phitak, T., Pothacharoen, P., & Udomruk, S. (2020). Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis. Journal of Neuroimmunology, 341, 577164. https://doi.org/10.1016/j.jneuroim.2020.577164
- Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225–237. https://doi.org/10.22038/ijbms.2019.32806.7897
- Kalicka, D., Znamirowska, A., Buniowska, M., Mas, J. M., & Canoves, A. F. (2017). Effect of stevia addition on selected properties of yoghurt during refrigerated storage. Polish Journal of Natural Sciences, 32(2), 323–334.
- Karagözlü, C., Gülfem, Ü., Akalın, A. S., Ecem, A., & Kınık, Ö. (2018). The supplementary effect of black and green tea infusion on antimicrobial activities of kefir. Food and Health, 4, 124–131. https://doi.org/10.3153/FH18012
10.3153/FH18012 Google Scholar
- Khan, A. K., Rashid, R., Fatima, N., Mahmood, S., Mir, S., Khan, S., Jabeen, N., & Murtaza, G. (2015). Pharmacological activities of protocatechuic acid. Acta Poloniae Pharmaceutica, 72(4), 643–650.
- Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2019). Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules, 10(1), 59. https://doi.org/10.3390/biom10010059
- Kieserling, K., Vu, T. M., Drusch, S., & Schalow, S. (2019). Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt. Food Hydrocolloids, 94, 152–163. https://doi.org/10.1016/j.foodhyd.2019.02.051
- Kim, D. H., Jeong, D., Kim, H., Kang, I. B., Chon, J. W., Song, K. Y., & Seo, K. H. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean Journal for Food Science of Animal Resources, 36(6), 787–790. https://doi.org/10.5851/kosfa.2016.36.6.787
- Kim, D. I., Lee, S. J., Lee, S. B., Park, K., Kim, W. J., & Moon, S. K. (2008). Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 29(9), 1701–1709. https://doi.org/10.1093/carcin/bgn055
- Kivanc, M., & Yapici, E. (2019). Survival of Escherichia coli O157:H7 and Staphylococcus aureus during the fermentation and storage of kefir. Food Science and Technology, 39(suppl 1), 225–230. https://doi.org/10.1590/fst.39517.
- Kök Taş, T., İlay, E., & Öker, A. (2014). Pekmez ve erik kullanılarak üretilen kefirlerin bazı kalite kriterlerinin belirlenmesi. Türk Tarım-Gıda Bilim Ve Teknoloji Dergisi, 2, 86–91. https://doi.org/10.24925/turjaf.v2i2.86-91.82
10.24925/turjaf.v2i2.86?91.82 Google Scholar
- Lisak, K., Lenc, M., Jeličić, I., & Božanić, R. (2011). Sensory evaluation of the strawberry flavored yoghurt with stevia and sucrose addition. Croatian Journal of Food Technology, Biotechnology and Nutrition, 7, 39–43.
- Lopitz-Otsoa, F., Rementeria, A., Elguezabal, N., & Garaizar, J. (2006). Kefir: A symbiotic yeasts-bacteria community with alleged healthy capabilities. Revista Iberoamericana de Micologia, 23, 67–74. https://doi.org/10.1016/s1130-1406(06)70016-x
- M’hir, S., Filannino, P., Mejri, A., Tlais, A. Z. A., Di Cagno, R., & Ayed, L. (2021). Functional exploitation of carob, oat flour, and whey permeate as substrates for a novel kefir-like fermented beverage: An optimized formulation. Food, 10, 294. https://doi.org/10.3390/foods10020294
- Macori, G., & Cotter, P. D. (2018). Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 49, 172–178. https://doi.org/10.1016/j.copbio.2017.09.002
- Mahtout, R., Zaidi, F., Saadi, L. O., Boudjou, S., Oomah, B. D., & Hosseinian, F. (2016). Carob (Ceratonia siliqua L.) supplementation affects kefir quality and antioxidant capacity during storage. International Journal of Engineering and Techniques, 2, 168.
- Martinello, F., Soares, S. M., Franco, J. J., Santos, A. C., Sugohara, A., Garcia, S. B., Curti, C., & Uyemura, S. A. (2006). Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food and Chemical Toxicology, 44, 810–818. https://doi.org/10.1016/j.fct.2005.10.011
- McCain, H. R., Kaliappan, S., & Drake, M. A. (2018). Invited review: Sugar reduction in dairy products. Journal of Dairy Science, 101, 8619–8640. https://doi.org/10.3168/jds.2017-14347
- Meenakshi, V. R., Ganya, S., & Umamaheswari, T. S. (2018). Formulation of value enriched probiotic fruit yoghurt. International Journal of Current Microbiology and Applied Sciences, 7, 1440–1450. https://doi.org/10.20546/ijcmas.2018.703.172
10.20546/ijcmas.2018.703.172 Google Scholar
- Miguel, M., Faleiro, M., Guerreiro, A., & Antunes, M. (2014). Arbutus unedo L.: Chemical and biological properties. Molecules, 19, 15799–15823. https://doi.org/10.3390/molecules191015799
- Morgado, S., Morgado, M., Plácido, A. I., Roque, F., & Duarte, A. P. (2018). Arbutus unedo L.: From traditional medicine to potential uses inmodern pharmacotherapy. Journal of Ethnopharmacology, 225, 90–102. https://doi.org/10.1016/j.jep.2018.07.004
- Mosele, J. I., Macià, A., Romero, M. P., & Motilva, M. J. (2016). Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chemistry, 15, 120–130. https://doi.org/10.1016/j.foodchem.2016.01.076
- NCCLS (Clinical Laboratory Standards Institute, National Committee for Clinical Laboratory Standards) (1997). Performance standards for antimicrobial disk susceptibility tests. In Approved standard M2- A6. Wayne.
- Pandey, A., Bani, S., & Lal Sangwan, P. (2014). Anti-obesity potential of gallic acid from Labisia pumila, through augmentation of adipokines in high fat diet induced obesity in C57BL/6 mice. Advances in Research, 2(10), 556–570. https://doi.org/10.9734/AIR/2014/10182
10.9734/AIR/2014/10182 Google Scholar
- Rai, A., Das, S., Chamallamudi, M. R., Nandakumar, K., Shetty, R., Gill, M., Sumalatha, S., Devkar, R., Gourishetti, K., & Kumar, N. (2018). Evaluation of the aphrodisiac potential of a chemically characterized aqueous extract of Tamarindus indica pulp. Journal of Ethnopharmacology, 210, 118–124. https://doi.org/10.1016/j.jep.2017.08.016
- Ranasinghe, R. A. A. S., Edirisinghe, M. P., & Nayananjalie, W. A. D. (2021). Developing a low-fat drinking yoghurt by incorporating green tea (Camellia sinensis) extract as a functional ingredient. Asian Journal of Dairy & Food Research, 40, 100–105. https://doi.org/10.18805/ajdfr.DR-209
10.18805/ajdfr.DR?209 Google Scholar
- Ruengdech, A., & Siripatrawan, U. (2021). Application of catechin nanoencapsulation with enhanced antioxidant activity in high pressure processed catechin-fortified coconut milk. LWT-Food Science and Technology, 140, 110594. https://doi.org/10.1016/j.lwt.2020.110594
- Saint-Eve, A., Leclercq, H., Berthelo, S., Saulnier, B., Oettgen, W., & Delarue, J. (2016). How much sugar do consumers add to plain yogurts? Insights from a study examining French consumer behavior and self-reported habits. Appetite, 99, 277–284. https://doi.org/10.1016/j.appet.2016.01.032
- Sakandar, H. A., & Zhang, H. (2021). Trends in probiotic (s)-fermented milks and their in vivo functionality: A review. Trends in Food Science & Technology, 110, 55–65. https://doi.org/10.1016/j.tifs.2021.01.054
- Savastano, M. L., Pati, S., Bevilacqua, A., Corbo, M. R., Rizzuti, A., Pischetsrieder, M., & Losito, I. (2020). Influence of the production technology on kefir characteristics: Evaluation of microbiological aspects and profiling of phosphopeptides by LC-ESI-QTOF-MS/MS. Food Research International, 129, 108853. https://doi.org/10.1016/j.foodres.2019.108853
- Şeker, M., & Toplu, C. (2010). Determination and comparison of chemical characteristics of Arbutus unedo L. and arbutus andrachnae L. (family Ericaceae) fruits. Journal of Medicinal Food, 13, 1013–1018. https://doi.org/10.1089/jmf.2009.0167
- Semeniuc, C. A., Rotar, A., Stan, L., Pop, C. R., Socaci, S., Mireşan, V., & Muste, S. (2016). Characterization of pine bud syrup and its effect on physicochemical and sensory properties of kefir. CyTA-Journal of Food, 14, 213–218. https://doi.org/10.1080/19476337.2015.1085905
- Setyawardani, T., & Sumarmono, J. (2015). Chemical and microbiological characteristics of goat milk kefir during storage under different temperatures. Journal of the Indonesian Tropical Animal Agriculture, 40, 183–188. https://doi.org/10.14710/jitaa.40.3.183-188
10.14710/jitaa.40.3.183?188 Google Scholar
- Shirani, K., Yousefsani, B. S., Shirani, M., & Karimi, G. (2020). Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review. Phytotherapy Research, 34(8), 1734–1744. https://doi.org/10.1002/ptr.6641
- Song, S., Su, Z., Xu, H., Niu, M., Chen, X., Min, H., Zhang, B., Sun, G., Xie, S., Wang, H., & Gao, Q. (2017). Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death & Disease, 8(2), e2612. https://doi.org/10.1038/cddis.2017.38
- Srinivasulu, C., Ramgopal, M., Ramanjaneyulu, G., Anuradha, C. M., & Kumar, C. S. (2018). Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomedicine & Pharmacotherapy, 108, 547–557. https://doi.org/10.1016/j.biopha.2018.09.069
- Stoll, S., Bitencourt, S., Laufer, S., & Inês Goettert, M. (2019). Myricetin inhibits panel of kinases implicated in tumorigenesis. Basic & Clinical Pharmacology & Toxicology, 125(1), 3–7. https://doi.org/10.1111/bcpt.13201
- Sui, J. Q., Xie, K. P., & Xie, M. J. (2016). Inhibitory effect of luteolin on the proliferation of human breast cancer cell lines induced by epidermal growth factor. Sheng Li Xue Bao: Acta Physiologica Sinica, 68(1), 27–34.
- Sulieman, A. M. E., Alawad, S. M., Osman, M. A., & Abdelmageed, E. A. (2015). Physicochemical characteristics of local varieties of tamarind (Tamarindus indica L), Sudan. International Journal of Plant Research, 5, 13–18. https://doi.org/10.5923/j.plant.20150501.03
10.5923/j.plant.20150501.03 Google Scholar
- Sylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiology & Behavior, 164, 446–450. https://doi.org/10.1016/j.physbeh.2016.03.030
- Tanaka, T., Iwamoto, K., Wada, M., Yano, E., Suzuki, T., Kawaguchi, N., Shirasaka, N., Moriyama, T., & Homma, Y. (2021). Dietary syringic acid reduces fat mass in an ovariectomy-induced mouse model of obesity. Menopause, 28(12), 1340–1350. https://doi.org/10.1097/GME.0000000000001853
- Vahabzadeh, S., & Özpınar, H. (2018). Investigation of some biochemical properties, antimicrobial activity and antibiotic resistances of kefir supernatants and Lactococcus lactis ssp. lactis strains isolated from raw cow milk and cheese samples. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3), 443–450. https://doi.org/10.9775/kvfd.2017.19196
- Wang, H., Wang, C., Wang, M., & Guo, M. (2017). Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture kefir mild 01. Journal of Food Science, 82, 2650–2658. https://doi.org/10.1111/1750-3841.13935
- Wang, L., Wu, H., Yang, F., & Dong, W. (2019). The protective effects of myricetin against cardiovascular disease. Journal of Nutritional Science and Vitaminology, 65(6), 470–476. https://doi.org/10.3177/jnsv.65.470
- Wang, X., Kristo, E., & LaPointe, G. (2020). Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocolloids, 100, 105453. https://doi.org/10.13140/RG.2.2.25350.52806
- Wang, X., Li, C., Yun, F., Jiang, X., & Yu, L. (2021). Preparation and evaluation of gallate Ester derivatives used as promising antioxidant and antibacterial inhibitors. Chemistry & Biodiversity, 18(3), e2000913. https://doi.org/10.1002/cbdv.202000913
- Windayani, N., Kurniati, T., & Rukayadi, Y. (2020). Antibacterial activity of colostrum kefir against foodborne pathogen bacteria. IOP Conference Series: Earth and Environmental Science, 472(1), 012019. https://doi.org/10.1088/1755-1315/472/1/012019
10.1088/1755?1315/472/1/012019 Google Scholar
- Yang, S. F., Yang, W. E., Chang, H. R., Chu, S. C., & Hsieh, Y. S. (2008). Luteolin induces apoptosis in oral squamous cancer cells. Journal of Dental Research, 87(4), 401–406. https://doi.org/10.1177/154405910808700413
- Yaqub, S., Sakandar, H. A., Huma, N., Sadiq, F. A., Khan, Q. F., Imran, M., Slara, A. R., Perveen, R., & Sameen, A. (2018). Effects of artificial sweeteners on the quality parameters of yogurt during storage. Progress in Nutrition, 20, 57–63. https://doi.org/10.23751/pn.v20i2-S.5667
- Yeasmin, F., & Choi, H. W. (2020). Natural salicylates and their roles in human health. International Journal of Molecular Sciences, 21(23), 9049. https://doi.org/10.3390/ijms21239049
- Yerlikaya, O. (2014). Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Science and Technology International, 34, 221–229. https://doi.org/10.1590/FST.2014.0050
- Yirmibeşoğlu, S. S. S., & Öztürk, B. T. (2020). Comparing microbiological profiles, bioactivities, and physicochemical and sensory properties of donkey milk kefir and cow milk kefir. Turkish Journal of Veterinary and Animal Sciences, 44(4), 774–781.
- Zhang, X. Y., Chen, J., Yi, K., Peng, L., Xie, J., Gou, X., Peng, T., & Tang, L. (2020). Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut Microbes, 12(1), 1–18. https://doi.org/10.1080/19490976.2020.1842990