“Technological convergence” of preventive nutrition with non thermal processing
Corresponding Author
Gargi Dey
School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
Gut Leben, Inc., San Diego, California, USA
Correspondence
Gargi Dey, School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha, Pin- 751024, India.
Email: [email protected], [email protected]
Contribution: Conceptualization, Formal analysis, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorAnnesha Ghosh
School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
Contribution: Investigation, Writing - original draft
Search for more papers by this authorRajendra K. Tangirala
Gut Leben, Inc., San Diego, California, USA
Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Gargi Dey
School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
Gut Leben, Inc., San Diego, California, USA
Correspondence
Gargi Dey, School of Biotechnology, Kalinga Institute of Industrial Technology, Patia, Bhubaneswar, Odisha, Pin- 751024, India.
Email: [email protected], [email protected]
Contribution: Conceptualization, Formal analysis, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorAnnesha Ghosh
School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
Contribution: Investigation, Writing - original draft
Search for more papers by this authorRajendra K. Tangirala
Gut Leben, Inc., San Diego, California, USA
Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Post COVID-19 pandemic realization and expanding consumer demand for functional nutrition have compelled the food industry to focus on one, clean-label technologies to improve energy expenditure, microbial inactivation, shelf stability, and retention of functional nutrients, and second on the systematic evaluation of food matrices for bioactive potential (functionality) and designing novel food matrices and products healthier than the existing formats. The food industry is rapidly heading toward a “technological convergence” with the goal of establishing highly efficient processing technologies for safe, shelf-stable functional products.
Novelty impact statement
In this review, we evaluated the utility and efficiency of various non-thermal processing technologies (cold plasma, ultra-sonication, high pressure, pulsed electric field, pulsed light processing) with respect to their capabilities to retain phytonutrient functionality and antioxidant potential in processed foods. The review also discusses existing gaps in current non thermal processing techniques and explores potential improvements necessary to foster reliable next-generation processing technologies.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Aadil, R. M., Zeng, X.-A., Han, Z., & Sun, D.-W. (2013). Effects of ultrasound treatments on quality of grapefruit juice. Food Chemistry, 141, 3201–3206. https://doi.org/10.1016/j.foodchem.2013.06.008
- Aguiló-Aguayo, I., Gangopadhyay, N., Lyng, J. G., Brunton, N., & Rai, D. K. (2017). Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. Innovative Food Science & Emerging Technologies, 42, 49–55. https://doi.org/10.1016/j.ifset.2017.05.006
- Ali, M., Cheng, J., & Sun, D. (2020). Effects of dielectric barrier discharge cold plasma treatments on degradation of Anilazine fungicide and quality of tomato (Lycopersicon esculentum mill) juice. International Journal of Food Science & Technology., 56, 69–75. https://doi.org/10.1111/ijfs.14600
- F., A.-j., Ghafoor, K., Özcan, M. M., Jahurul, M. H. A., Babiker, E. E., Jinap, S., Sahena, F., Sharifudin, M. S., & Zaidul, I. S. M. (2018). Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. Journal of Food Science and Technology, 55, 3872–3880. https://doi.org/10.1007/s13197-018-3370-0
- Alpas, H. (2013). Effect of high hydrostatic pressure processing (HHP) on quality properties, squeezing pressure effect and shelf life of pomegranate juice. Current Opinion in Biotechnology, 24, S111. https://doi.org/10.1016/j.copbio.2013.05.342
- Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, 73, 178–184. https://doi.org/10.1016/j.lwt.2016.06.014
- Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2016). The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chemistry, 192, 328–335. https://doi.org/10.1016/j.foodchem.2015.07.031
- Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M. M., Bekhit, A. E. D., Roobab, U., Manzoor, M. F., & Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 104, 1–13. https://doi.org/10.1016/j.tifs.2020.07.008
- Augusto, P. E. D., Tribst, A. A. L., & Cristianini, M. (2018). Fruit Juices. In G. Rajauria & B. K. Tiwari (Eds.), High hydrostatic pressure and high-pressure homogenization processing of fruit juices (pp. 393–421). Academic Press.
- Avalos-Llano, K. R., Martín-Belloso, O., & Soliva-Fortuny, R. (2018). Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut strawberries. Food Chemistry, 264, 393–400. https://doi.org/10.1016/j.foodchem.2018.05.028
- Ayseli, Y. I., Aytekin, N., Buyukkayhan, D., Aslan, I., & Ayseli, M. T. (2020). Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends in Food Science & Technology, 105, 186–199. https://doi.org/10.1016/j.tifs.2020.09.001
- Baijuan, W., Ting, C., Yan, Z., Wen, P., Jing, W., Ji-Yuan, X., & Ming-Zhong, J. (2018). Effects of high voltage pulsed electric field on antioxidant activity and extraction of tea polysaccharides for third grade ripe Pu’er tea. Chemical Engineering Transactions, 64, 319–324. https://doi.org/10.3303/CET1864054
10.3303/CET1864054 Google Scholar
- Baş, D., & Boyacı, I. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
- Bao, T., Hao, X., Shishir, M. R. I., Karim, N., & Chen, W. (2020). Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chemistry, 337, 127783. https://doi.org/10.1016/j.foodchem.2020.127783
- Barba, F. J., Cortés, C., Esteve, M. J., & Frígola, A. (2011). Study of antioxidant capacity and quality parameters in an Orange juice–Milk beverage after high-pressure processing treatment. Food and Bioprocess Technology, 5, 2222–2232. https://doi.org/10.1007/s11947-011-0570-2
- Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725–742. https://doi.org/10.1016/j.foodres.2015.05.015
- Bermudez-Aguirre, D. (2017). Ultrasound: Advances in food processing and preservation ( 1st ed.). Elsevier Science.
- Boudries, H., Nabet, N., Chougui, N., Souagui, S., Loupassaki, S., Madani, K., & Dimitrov, K. (2019). Optimization of ultrasound-assisted extraction of antioxidant phenolics from Capparis spinosa flower buds and LC–MS analysis. Journal of Food Measurement and Characterization, 13, 2241–2252. https://doi.org/10.1007/s11694-019-00144-1
- Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology, 36, 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001
- Buniowska, M., Carbonell-Capella, J. M., Frigola, A., & Esteve, M. J. (2017). Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chemistry, 221, 1834–1842. https://doi.org/10.1016/j.foodchem.2016.10.093
- Buonopane, G. J., Antonacci, C., & Lopez, J. (2016). Effect of cold plasma processing on botanicals and their essential oils. Plasma Medicine, 6, 315–324. https://doi.org/10.1615/PlasmaMed.2017019125
10.1615/PlasmaMed.2017019125 Google Scholar
- BursaćKovačević, D., GajdošKljusurić, J., Putnik, P., Vukušić, T., Herceg, Z., & Dragović-Uzelac, V. (2016). Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry, 212, 323–331. https://doi.org/10.1016/j.foodchem.2016.05.192
- BursaćKovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., RežekJambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323. https://doi.org/10.1016/j.foodchem.2015.05.099
- Celik, C., Gencay, A., & Ocsoy, I. (2020). Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochimica et Biophysica Acta, 1865, 129801. https://doi.org/10.1016/j.bbagen.2020.129801
- Chakraborty, S., Ghag, S., Bhalerao, P. P., & Gokhale, J. S. (2020). The potential of pulsed light treatment to produce enzymatically stable Indian gooseberry (Emblica officinal Gaertn.) juice with maximal retention in total phenolics and vitamin C. Journal of Food Processing and Preservation, 44, e14932. https://doi.org/10.1111/jfpp.14932
- Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W. (2019). The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology, 12, 1842–1851. https://doi.org/10.1007/s11947-019-02331-w
- Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., Liao, X., & Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85–94. https://doi.org/10.1016/j.ifset.2013.03.003
- Chen, J., Tao, X.-Y., Sun, A.-D., Wang, Y., Liao, X.-J., Li, L.-N., & Zhang, S. (2014). Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. International Journal of Food Properties, 17, 1419–1427. https://doi.org/10.1080/10942912.2012.713429
- Chen, X., Fang, D., Zhao, R., Gao, J., Kimatu, B. M., Hu, Q., Chen, G., & Zhao, L. (2019). Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulinavelutipes polysaccharide. International Journal of Biological Macromolecules, 140, 505–514. https://doi.org/10.1016/j.ijbiomac.2019.08.163
- Chizoba Ekezie, F.-G., Cheng, J.-H., & Sun, D.-W. (2018). Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science & Technology, 74, 12–25. https://doi.org/10.1016/j.tifs.2018.01.007
- Chizoba Ekezie, F.-G., Sun, D.-W., & Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007
- Choi, Y., Kim, W., Lee, J.-S., Youn, S. J., Lee, H., & Baik, M.-Y. (2020). Enhanced antioxidant capacity of puffed turmeric (Curcuma longa L.) by high hydrostatic pressure extraction (HHPE) of bioactive compounds. Food, 9(11), 1690. https://doi.org/10.3390/foods9111690
- Christofi, S., Malliaris, D., Katsaros, G., Panagou, E., & Kallithraka, S. (2020). Limit SO2 content of wines by applying high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 62, 102342. https://doi.org/10.1016/j.ifset.2020.102342
- Cilla, A., Alegría, A., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Plaza, L., Clemente, G., Lagarda, M. J., & Barberá, R. (2012). Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. Journal of Agriculture and Food Chemistry, 60, 7282–7290. https://doi.org/10.1021/jf301165r
- Dacheng, K., Wangang, Z., Lorenzo, J. M., & Chen, X. (2020). Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Critical Reviews in Food Science and Nutrition, 61(11), 1914–1933. https://doi.org/10.1080/10408398.2020.1767538
- Dasan, B. G., & Boyaci, I. H. (2017). Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology, 11, 334–343. https://doi.org/10.1007/s11947-017-2014-0
- Denoya, G. I., Pataro, G., & Ferrari, G. (2020). Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biology and Technology, 160, 111055. https://doi.org/10.1016/j.postharvbio.2019.111055
- Dey, G., & Sireswar, S. (2021). Tailoring functional beverages from fruits and vegetables for specific disease conditions-are we there yet? Critical Revews Food Science & Technology, 61(12), 2034–2046. https://doi.org/10.1080/10408398.2020.1769021
- Dey, G., Mitra, A., Banerjee, R., & Maiti, B. R. (2001). Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochemical Engineering Journal, 7(3), 227–231. https://doi.org/10.1016/S1369-703X(00)00139-X
- Dimitrov, K., Pradal, D., Vauchel, P., Baouche, B., Nikov, I., & Dhulster, P. (2019). Modeling and optimization of extraction and energy consumption during ultrasound-assisted extraction of antioxidant polyphenols from pomegranate peels. Environmental Progress & Sustainable Energy, 38(5), 13148. https://doi.org/10.1002/ep.13148
- Dong, X., Wang, J., & Raghavan, V. (2020). Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Critical Reviews in Food Science and Nutrition, 61, 1–15. https://doi.org/10.1080/10408398.2020.1722942
- Dziadek, K., Kopeć, A., Dróżdż, T., Kiełbasa, P., Ostafin, M., Bulski, K., & Oziembłowski, M. (2019). Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. Journal of Food Science and Technology, 56, 1184–1191. https://doi.org/10.1007/s13197-019-03581-4
- El Kantar, S., Boussetta, N., Lebovka, N., Foucart, F., Rajha, H. N., Maroun, R. G., Louka, N., & Vorobiev, E. (2018). Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science & Emerging Technologies, 46, 153–161. https://doi.org/10.1016/j.ifset.2017.09.024
- Ezeh, O., Niranjan, K., & Gordon, M. H. (2016). Effect of enzyme pre-treatments on bioactive compounds in extracted Tiger nut oil and sugars in residual meals. Journal of the American Oil Chemists' Society, 93(11), 1541–1549. https://doi.org/10.1007/s11746-016-2883-9
- Fardet, A., & Richonnet, C. (2020). Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: A narrative review. Critical Reviews in Food Science and Nutrition, 60, 3233–3258. https://doi.org/10.1080/10408398.2019.1682512
- Fernández-Jalao, I., Sánchez-Moreno, C., & De Ancos, B. (2018). Effect of high-pressure processing on flavonoids, hydroxycinnamic acids, dihydrochalcones and antioxidant activity of apple “Golden delicious” from different geographical origin. Innovative Food Science & Emerging Technologies, 51, 20–31. https://doi.org/10.1016/j.ifset.2018.06.002
- Ferrari, G., Maresca, P., & Ciccarone, R. (2011). The effects of high hydrostatic pressure on the polyphenols and anthocyanins in red fruit products. Procedia Food Science, 1, 847–853. https://doi.org/10.1016/j.profoo.2011.09.128
- Franco, M., Agregán, B., López-Pedrouso, P., & Lorenzo, J. M. (2020). Application of pulsed electric fields for obtaining antioxidant extracts from fish residues. Antioxidants, 9(2), 90. https://doi.org/10.3390/antiox9020090
- Galland, L. (2010). Diet and inflammation. Nutrition in Clinical Practice, 25, 634–640. https://doi.org/10.1177/0884533610385703
- Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Food, 7(10), 164. https://doi.org/10.3390/foods7100164
- Gan, Z., Feng, X., Hou, Y., Sun, A., & Wang, R. (2020). Cold plasma jet with dielectric barrier configuration: Investigating its effect on the cell membrane of E. coli and S. cerevisiae and its impact on the quality of chokeberry juice. LWT, 136(Pt 1), 110223. https://doi.org/10.1016/j.lwt.2020.110223
- Gavahian, M., & Cullen, P. J. (2020). Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends. Food Reviews International, 36(2), 193–214. https://doi.org/10.1080/87559129.2019.1630638
- Gholamhosseinpour, A., & Hashemi, S. M. B. (2018). Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of Food Process Engineering, 42(1), e12930. https://doi.org/10.1111/jfpe.12930
- González-Casado, S., Martín-Belloso, O., Elez-Martínez, P., & Soliva-Fortuny, R. (2018). Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biology and Technology, 137, 113–118. https://doi.org/10.1016/j.postharvbio.2017.11.017
- Guimarães, J. T., Keven Silva, E., SenakaRanadheera, C., Moraes, J., Raices, R. S. L., Silva, M. C., Ferreira, M. S., Freitas, M. Q., Meireles, M. A. A., & Cruz, A. G. (2019). Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrasonics Sonochemistry, 55, 155–164. https://doi.org/10.1016/j.ultsonch.2019.02.025
- He, J., Santos-Buelga, C., Silva, A. M. S., Mateus, N., & de Freitas, V. (2006). Isolation and structural characterization of new anthocyanin-derived yellow pigments in aged red wines. Journal of Agricultural and Food Chemistry, 54(25), 9598–9603. https://doi.org/10.1021/jf062325q
- Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672. https://doi.org/10.1016/j.foodchem.2015.05.135
- Hernández-Falcón, T. A., Monter-Arciniega, A., Cruz-Cansino, N., del, S., Alanís-García, E., Rodríguez-Serrano, G. M., Castañeda-Ovando, A., García-Garibay, M., Ramírez-Moreno, E., & Jaimez-Ordaz, J. (2018). Effect of thermoultrasound on aflatoxin M 1 levels, physicochemical and microbiological properties of milk during storage. Ultrasonics Sonochemistry, 48, 396–403. https://doi.org/10.1016/j.ultsonch.2018.06.018
- Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79–86. https://doi.org/10.1016/j.foodchem.2019.03.123
- Ji, Y., Hu, W., Liao, J., Jiang, A., Xiu, Z., Saren, G., Guan, Y., Yang, X., Feng, K., & Liu, C. (2020). Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture, 100, 5686–5595. https://doi.org/10.1002/jsfa.10611
- Jiang, M., Chen, T., Zhao, Y., Wu, Q., Feng, B., Xiong, S., & Wang, B. (2017). Effects of high voltage pulsed electric field on antioxidant activity of tea polyphenols for Yunnan Pu’er Tea. Chemical Engineering Transactions, 62, 1255–1260. https://doi.org/10.3303/CET1762210
10.3303/CET1762210 Google Scholar
- Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Sackey, A. S., Wu, M., & Xiao, L. (2018). Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT, 92, 61–66. https://doi.org/10.1016/j.lwt.2018.02.016
- Lamanauskas, N., Pataro, N., Bobinas, G., Satkauskas, C., Viskelis, S., Bobinaitė, P., Ferrari, R., & Giovanna, F.. (2016). Impact of pulsed electric field treatment on juice yield and recovery of bioactive compounds from raspberries and their by-products. Zemdirbyste-Agriculture, 103, 83–90. https://doi.org/10.13080/z-a.2016.103.011
- Leal Vieira Cubas, A., Medeiros Machado, M., TayaneBianchet, R., Alexandra da Costa Hermann, K., Alexsander Bork, J., Angelo Debacher, N., Flores Lins, E., Maraschin, M., Sousa Coelho, D., & Helena Siegel Moecke, E. (2020). Oil extraction from spent coffee grounds assisted by non-thermal plasma. Separation and Purification Technology, 250, 117171. https://doi.org/10.1016/j.seppur.2020.117171
- Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). Physiological and Metabolomic analysis of cold plasma treated fresh-cut strawberries. Journal of Agricultural and Food Chemistry, 67(14), 4043–4053. https://doi.org/10.1021/acs.jafc.9b00656
- Liu, S., Xu, Q., Li, X., Wang, Y., Zhu, J., Ning, C., Chang, X., & Meng, X. (2016). Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innovative Food Science & Emerging Technologies, 36, 48–58. https://doi.org/10.1016/j.ifset.2016.06.001
- Lopes, M. M. A., Silva, E. O., Canuto, K. M., Silva, L. M. A., Gallão, M. I., Urban, L., Ayala-Zavala, F., & Miranda, M. R. A. (2016). Low fluence pulsed light enhanced phytochemical content and antioxidant potential of “Tommy Atkins” mango peel and pulp. Innovative Food Science & Emerging Technologies, 33, 216–224. https://doi.org/10.1016/j.ifset.2015.12.019
- López-Giral, N., González-Arenzana, L., González-Ferrero, C., López, R., Santamaría, P., López-Alfaro, I., & Garde-Cerdán, T. (2015). Pulsed electric field treatment to improve the phenolic compound extraction from Graciano, Tempranillo and Grenache grape varieties during two vintages. Innovative Food Science & Emerging Technologies, 28, 31–39. https://doi.org/10.1016/j.ifset.2015.01.003
- Lu, C., Ding, J., Park, H. K., & Feng, H. (2020). High intensity ultrasound as a physical elicitor affects secondary metabolites and antioxidant capacity of tomato fruits. Food Control, 113, 107176. https://doi.org/10.1016/j.foodcont.2020.107176
- Lukić, K., Brnčić, M., Ćurko, N., Tomašević, M., Valinger, D., Denoya, G. I., Barba, F. J., & Ganić, K. K. (2019). Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. Ultrasonics Sonochemistry, 59, 104725. https://doi.org/10.1016/j.ultsonch.2019.104725
- Lukić, K., Ćurko, N., Tomašević, M., & KovačevićGanić, K. (2020). Phenolic and aroma changes of red and white wines during aging induced by high hydrostatic pressure. Food, 9, 1034. https://doi.org/10.3390/foods9081034
- Luo, M., Hou, F., Dong, L., Huang, F., Zhang, R., & Su, D. (2020). Comparison of microwave and high-pressure processing on bound phenolic composition and antioxidant activities of sorghum Hull. International Journal of Food Science & Technology, 55, 3190–3202. https://doi.org/10.1111/ijfs.14583
- Manzoor, M. F., Zeng, X. A., Ahmad, N., Ahmed, Z., Rehman, A., Aadil, R. M., Roobab, U., Siddique, R., & Rahaman, A. (2020). Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial and physical stability of almond milk during storage. Journal of Food Processing and Preservation., 44, 14541. https://doi.org/10.1111/jfpp.14541
- Maria de Fátima, D. L., Elenilson, G. A. F., Lorena Mara, A. S., Thatyane, V. F., Nédio Jair, W., de Brito, E. S., Fabiano, A. N. F., & Sueli, R. (2020). Thermal and non-thermal processing effect on açai juice composition. Food Research International, 136, 109506. https://doi.org/10.1016/j.foodres.2020.109506
- Marszałek, K., Woźniak, Ł., Skąpska, S., & Mitek, M. (2017). High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. Journal of Food Science and Technology, 54, 832–841. https://doi.org/10.1007/s13197-017-2529-4
- McDonald, K. F., Curry, R. D., Clevenger, T. E., Unklesbay, K., Eisenstark, A., Golden, J., & Morgan, R. D. (2000). A comparison of pulsed and continuous ultraviolet light sources for the decontamination of surfaces. IEEE Transactions on Plasma Science, 28, 1581–1587. https://doi.org/10.1109/27.901237
- Mehta, D., Sharma, N., Bansal, V., Sangwan, R. S., & Yadav, S. K. (2019). Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innovative Food Science & Emerging Technologies., 52, 343–349. https://doi.org/10.1016/j.ifset.2019.01.015
- Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47. https://doi.org/10.1016/j.tifs.2016.07.001
- Morales-De La Peña, M., Salvia-Trujillo, L., Rojas-Graü, A., & Martín-Belloso, O. (2016). Effects of high intensity pulsed electric fields or thermal treatments and refrigerated storage on antioxidant compounds of fruit juice-Milk beverages. Part II: Carotenoids. Journal of Food Processing and Preservation, 41, e13143. https://doi.org/10.1111/jfpp.13143
- Morales-de la Peña, M., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2010). Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT - Food Science and Technology, 43, 872–881. https://doi.org/10.1016/j.lwt.2010.01.015
- Moreira, S. A., Pintado, M. E., & Saraiva, J. A. (2020). Optimization of antioxidant activity and bioactive compounds extraction of winter savory leaves by high hydrostatic pressure. High Pressure Research, 40, 543–560. https://doi.org/10.1080/08957959.2020.1830079
- Munekata, P. E. S., Alcántara, C., Žugčić, T., Abdelkebir, R., Carmen Collado, M., Vicente García-Pérez, J., RežekJambrak, A., Gavahian, M., Barba, F. J., & Lorenzo, J. M. (2020). Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Research International, 134, 109242. https://doi.org/10.1016/j.foodres.2020.109242
- Munir, M., Nadeem, M., Mahmood Qureshi, T., Gamlath, C. J., Martin, G. J. O., Hemar, Y., & Ashok kumar, M. (2020). Effect of sonication, microwaves and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 67, 105140. https://doi.org/10.1016/j.ultsonch.2020.105140
- Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97, 4016–4021. https://doi.org/10.1002/jsfa.8268
- Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Food, 7, 4. https://doi.org/10.3390/foods7010004
- Pedrós-Garrido, S., Condón-Abanto, S., Clemente, I., Beltrán, J. A., Lyng, J. G., Bolton, D., Brunton, N., & Whyte, P. (2018). Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo salar) and food contact surface materials. Innovative Food Science & Emerging Technologies., 50, 124–131. https://doi.org/10.1016/j.ifset.2018.10.001
- Perussello, C. A. (2020). Herbs, spices and medicinal plants: Processing, health benefits and safety. In M. B. Hossain, N. P. Brunton, & D. K. Rai (Eds.), Non-thermal processing of herbs and spices (pp. 23–44). John Wiley & Sons Ltd.
- Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31, 593–606. https://doi.org/10.1016/j.foodcont.2012.11.039
- Quan, W., Tao, Y., Qie, X., Zeng, M., Qin, F., Chen, J., & He, Z. (2019). Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods, 64, 103633. https://doi.org/10.1016/j.jff.2019.103633
- Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2019). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57, 102–112. https://doi.org/10.1007/s13197-019-04035-7
- Rinaldi, M., Littardi, P., Ganino, T., Aldini, A., Rodolfi, M., Barbanti, D., & Chiavaro, E. (2020). Comparison of physical, microstructural, antioxidant and enzymatic properties of pineapple cubes treated with conventional heating, ohmic heating and high-pressure processing. LWT, 134, 110207. https://doi.org/10.1016/j.lwt.2020.110207
- Rios-Corripio, G., Welti-Chanes, J., Rodríguez-Martínez, V., & Guerrero-Beltrán, J. Á. (2019). Influence of high hydrostatic pressure processing on physicochemical characteristics of a fermented pomegranate (Punica granatum L.) beverage. Innovative Food Science & Emerging Technologies, 59, 102249. https://doi.org/10.1016/j.ifset.2019.102249
- Ruengdech, A., & Siripatrawan, U. (2021). Application of catechin nanoencapsulation with enhanced antioxidant activity in high pressure processed catechin-fortified coconut milk. LWT, 140, 110594. https://doi.org/10.1016/j.lwt.2020.110594
- Rux, G., Gelewsky, R., Schlüter, O., & Herppich, W. B. (2020). High hydrostatic pressure treatment effects on selected tissue properties of fresh horticultural products. Innovative Food Science & Emerging Technologies, 61, 102326. https://doi.org/10.1016/j.ifset.2020.102326
- Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Science and Technology International, 22, 288–301. https://doi.org/10.1177/1082013215596466
- Salinas-Roca, B., Soliva-Fortuny, R., Welti-Chanes, J., & Martín-Belloso, O. (2018). Effect of pulsed light, edible coating, and dipping on the phenolic profile and antioxidant potential of fresh-cut mango. Journal of Food Processing and Preservation, 42, e13591. https://doi.org/10.1111/jfpp.13591
- Santos, M. C., Nunes, C., Jourdes, M., Teissedre, P.-L., Rodrigues, A., Amado, O., Saraiva, J. A., & Coimbra, M. A. (2016). Evaluation of the potential of high pressure technology as an enological practice for red wines. Innovative Food Science & Emerging Technologies, 33, 76–83. https://doi.org/10.1016/j.ifset.2015.11.018
- Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C., & Hernández-Carlos, B. (2019). Antioxidants. In E. Shalaby (Ed.), Antioxidant compounds and their antioxidant mechanism. ISBN 978-1-78923-920-1.
- Sarangapani, C., O’Toole, G., Cullen, P. J., & Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235–241. https://doi.org/10.1016/j.ifset.2017.02.012
- Senrayan, J., & Venkatachalam, S. (2018). Optimization of ultrasound-assisted solvent extraction (UASE) based on oil yield, antioxidant activity and evaluation of fatty acid composition and thermal stability of Coriandrum sativum L. seed oil. Food Science and Biotechnology, 28, 377–386. https://doi.org/10.1007/s10068-018-0467-1
- Shishir, M. R. I., Karim, N., Bao, T., Gowd, V., Ding, T., Sun, C., & Chen, W. (2019). Cold plasma pretreatment—A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology, 38, 2134–2150. https://doi.org/10.1080/07373937.2019.1683860
- Siddeeg, A., Faisal Manzoor, M., Haseeb Ahmad, M., Ahmad, N., Ahmed, Z., Kashif Iqbal Khan, M., Aslam Maan, A., Zeng, X. A., & Ammar, A. F. (2019). Pulsed electric field-assisted ethanolic extraction of date palm fruits: Bioactive compounds, antioxidant activity and physicochemical properties. Processes, 7, 585. https://doi.org/10.3390/pr7090585
- Sulaiman, A., Farid, M., & Silva, F. V. (2016). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23, 265–276. https://doi.org/10.1177/1082013216685484
- Szczepańska, J., Barba, F. J., Skąpska, S., & Marszałek, K. (2019). High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chemistry, 307, 125549. https://doi.org/10.1016/j.foodchem.2019.125549
- Tarafdar, A., Kumar, Y., Kaur, B. P., & Badgujar, P. C. (2021). High-pressure microfluidization of sugarcane juice: Effect on total phenols, total flavonoids, antioxidant activity, and microbiological quality. Journal of Food Processing and Preservation, 2021, e15428. https://doi.org/10.1111/jfpp.15428
- Tchabo, W., Ma, Y., Kwaw, E., Zhang, H., Li, X., & Afoakwah, N. A. (2017). Effects of ultrasound, high pressure, and Manosonication processes on phenolic profile and antioxidant properties of a sulfur dioxide-free mulberry (Morus nigra) wine. Food and Bioprocess Technology, 10, 1210–1223. https://doi.org/10.1007/s11947-017-1892-5
- Tsai, M.-J., Cheng, M.-C., Chen, B.-Y., & Wang, C.-Y. (2018). Effect of high-pressure processing on immunoreactivity, microbial and physicochemical properties of hazelnut milk. International Journal of Food Science & Technology, 53, 1672–1680. https://doi.org/10.1111/ijfs.13751
- Uzuner, S., & Evrendilek, G. A. (2019). Functional responses of cold brewed white tea to high pressure processing. Journal of Food Process Engineering, 42(5), e13098. https://doi.org/10.1111/jfpe.13098
- Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J. E., Pérez-Won, M., Briones-Labarca, V., & Morales-Castro, J. (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies, 13, 13–22. https://doi.org/10.1016/j.ifset.2011.10.009
- Vollmer, K., Chakraborty, S., Bhalerao, P. P., Carle, R., Frank, J., & Steingass, C. B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology, 13, 1095–1109. https://doi.org/10.1007/s11947-020-02460-7
- Wen, L., Zhang, Z., Rai, D., Sun, D., & Tiwari, B. K. (2019). Ultrasound-assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. Journal of Food Process Engineering, 42, e13191. https://doi.org/10.1111/jfpe.13191
- Xiang, Q., Liu, X., Li, J., Liu, S., Zhang, H., & Bai, Y. (2018). Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chemistry, 254, 201–207. https://doi.org/10.1016/j.foodchem.2018.02.008
- Xiaokang, W., Brunton, N. P., Lyng, J. G., Harrison, S. M., Carpes, S. T., & Papoutsis, K. (2020). Volatile and non-volatile compounds of shiitake mushrooms treated with pulsed light after twenty-four hour storage at different conditions. Food Bioscience, 36, 100619. https://doi.org/10.1016/j.fbio.2020.100619
- Yang, C. S., Ho, C.-T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: Differing meanings in food science and health science. Journal of Agricultural and Food Chemistry, 66, 3063–3068. https://doi.org/10.1021/acs.jafc.7b05830
- Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food Bioprocess Technology, 10, 413–433. https://doi.org/10.1007/s11947-016-1855-2
- Yuan, B., Danao, M.-G. C., Stratton, J. E., Weier, S. A., Weller, C. L., & Lu, M. (2018). High pressure processing (HPP) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innovative Food Science & Emerging Technologies, 47, 249–255. https://doi.org/10.1016/j.ifset.2018.03.009
- Zhang, W., Shen, Y., Li, Z., Xie, X., Gong, E. S., Tian, J., Si, X., Wang, Y., Gao, N., Shu, C., Meng, X., Li, B., & Liu, R. H. (2020). Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium Spp.) puree. Food Chemistry, 342, 128564. https://doi.org/10.1016/j.foodchem.2020.128564
- Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., & Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science & Technology, 54, 1–13. https://doi.org/10.1111/ijfs.13903
- Zuluaga, C., Martínez, A., Fernández, J., López-Baldó, J., Quiles, A., & Rodrigo, D. (2016). Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innovative Food Science & Emerging Technologies, 37, 10–17. https://doi.org/10.1016/j.ifset.2016.07.023