Ultrasound assisted extraction of phenolic compounds from Capparis Ovata var canescens fruit using deep eutectic solvents
Corresponding Author
Sercan Ozbek Yazici
Faculty of Health Sciences, Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
Correspondence
Sercan Ozbek Yazici, Faculty of Health Sciences, Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, 15100, Turkey.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorİsmail Ozmen
Art and Science Faculty, Department of Chemistry, Suleyman Demirel University, Isparta, Turkey
Contribution: Formal analysis, Methodology, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorCorresponding Author
Sercan Ozbek Yazici
Faculty of Health Sciences, Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
Correspondence
Sercan Ozbek Yazici, Faculty of Health Sciences, Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, 15100, Turkey.
Email: [email protected]
Contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorİsmail Ozmen
Art and Science Faculty, Department of Chemistry, Suleyman Demirel University, Isparta, Turkey
Contribution: Formal analysis, Methodology, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
The aim of this study is to develop a green procedure that provides high-efficiency extraction of phenolic compounds from Capparis Ovata fruit with Deep Eutectic Solvent (DES) using ultrasound-assisted extraction method. Ten DES combinations were prepared by mixing various proportions of choline chloride (ChCl), Na-acetate and Na-citrate with sugar alcohols, carboxylic acid. These DESs were tested as an effective solvent for recovering phenolic compounds. DES composed of lactic acid combining with ChCl showed the highest efficiency of extraction for phenolic compounds. Optimal extraction conditions were found as follows; 20% water in DES, liquid/solid ratio 20:1 (mL/g), temperature 50℃, and extraction time 30 min. The maximum total phenolic content, total flavonoid content, DPPH inhibition percentage, and ferric reducing power capacity values under optimal conditions were 30.55 ± 0.57 mg GAE/g DW, 13.04 ± 0.4 mg QE/g DW, 98.49 ± 2.51% and 1.79 ± 0.04 (absorbance units), respectively. The concentrations of all phenolic compounds determined by chromatographic method have increased under optimal extraction conditions.
Practical applications
The application of DES in the extraction of the phenolic compound is an innovative approach for environmentally, friendly, low-costs, and improving extraction efficiency. Caper fruits are known to be rich sources of bioactive compounds. Caper is consumed as food and traditional folk medicines for their health benefits. At previous studies, a green extraction procedure to obtain phenolic compounds from Capparis Ovata var canescens fruit has not been established by using DES. Therefore, this study aimed to improve a green procedure to obtain phenolic compounds with strong antioxidant properties, which could be employed in the food industry. In addition, determination of optimal extraction conditions has been performed to guide large-scale production.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- Aires, A., & Carvalho, R. (2020). Kiwi fruit residues from industry processing: Study for a maximum phenolic recovery yield. Journal of Food Science and Technology, 57(11), 4265–4276. https://doi.org/10.1007/s13197-020-04466-7
- Aksay, O., Selli, S., & Kelebek, H. (2021). LC-DAD-ESI-MS/MS-based assessment of the bioactive compounds in fresh and fermented caper (Capparis spinosa) buds and berries. Food Chemistry, 337, 127959. https://doi.org/10.1016/j.foodchem.2020.127959
- Ali, M. C., Chen, J., Zhang, H., Li, Z., Zhao, L., & Qiu, H. (2019). Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta, 203, 16–22. https://doi.org/10.1016/j.talanta.2019.05.012
- Aliyazicioglu, R., Eyupoglu, O. E., Sahin, H., Yildiz, O., & Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. African Journal of Biotechnology, 12(47), 6643–6649. https://doi.org/10.5897/AJB2013.13241
- Arslan, R., Bektas, N., & Ozturk, Y. (2010). Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. Journal of Ethnopharmacology, 131(1), 28–32. https://doi.org/10.1016/j.jep.2010.05.060
- Bakirtzi, C., Triantafyllidou, K., & Makris, D. P. (2016). Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 120–127. https://doi.org/10.1016/j.jarmap.2016.03.003
- Bektas, N., Arslan, R., Goger, F., Kirimer, N., & Öztürk, Y. (2012). Investigation for anti-inflammatory and anti-thrombotic activities of methanol extract of Capparis ovata buds and fruits. Journal of Ethnopharmacology, 142(1), 48–52. https://doi.org/10.1016/j.jep.2012.04.011
- Bonacci, S., Di Gioia, M. L., Costanzo, P., Maiuolo, L., Tallarico, S., & Nardi, M. (2020). Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants, 9(6), 513. https://doi.org/10.3390/antiox9060513
- Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., Borguini, R. G., Godoy, R. L. O., Cabral, L. M. C., & Tonon, R. V. (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86–91. https://doi.org/10.1016/j.indcrop.2017.10.012
- Cao, J., Chen, L., Li, M., Cao, F., Zhao, L., & Su, E. (2018). Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. Journal of Pharmaceutical and Biomedical Analysis, 158, 317–326. https://doi.org/10.1016/j.jpba.2018.06.007
- Chen, X. Q., Li, Z. H., Liu, L. L., Wang, H., Yang, S. H., Zhang, J. S., & Zhang, Y. (2021). Green extraction using deep eutectic solvents and antioxidant activities of flavonoids from two fruits of Rubia species. LWT, 148, 111708. https://doi.org/10.1016/j.lwt.2021.111708
- Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., & Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology, 55(2), 217–225. https://doi.org/10.1016/j.seppur.2006.12.005
- Cvjetko Bubalo, M., Vidović, S., Radojčić Redovniković, I., & Jokić, S. (2015). Green solvents for green technologies. Journal of Chemical Technology & Biotechnology, 90(9), 1631–1639. https://doi.org/10.1002/jctb.4668
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313
- Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019
- Davis, P. H. (1982). Flora of Turkey (Vol. 7). Oxford at the University Press.
- de Almeida Pontes, P. V., Shiwaku, I. A., Maximo, G. J., & Batista, E. A. C. (2021). Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chemistry, 352, 129346. https://doi.org/10.1016/j.foodchem.2021.129346
- Di Majo, D., La Neve, L., La Guardia, M., Casuccio, A., & Giammanco, M. (2011). The influence of two different pH levels on the antioxidant properties of flavonols, flavan-3-ols, phenolic acids and aldehyde compounds analysed in synthetic wine and in a phosphate buffer. Journal of Food Composition and Analysis, 24(2), 265–269. https://doi.org/10.1016/j.jfca.2010.09.013
- Duan, L., Dou, L. L., Guo, L., Li, P., & Liu, E. H. (2016). Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering, 4(4), 2405–2411. https://doi.org/10.1021/acssuschemeng.6b00091
- Durmaz, E., Sumnu, G., & Sahin, S. (2015). Microwave-assisted extraction of phenolic compounds from caper. Separation Science and Technology, 50(13), 1986–1992. https://doi.org/10.1080/01496395.2014.995189
- Dursun, E., & Dursun, I. (2005). Some physical properties of caper seed. Biosystems Engineering, 92(2), 237–245. https://doi.org/10.1016/j.biosystemseng.2005.06.003
- El-Shershaby, M. (2010). Toxicity and Biological effect of Capparis leaves extracts to the black cutworm, Agrotis ipsilon (Hufn.). Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 2(1), 45–51. https://doi.org/10.21608/EAJBSF.2010.17462
10.21608/eajbsf.2010.17462 Google Scholar
- Gao, M. Z., Cui, Q., Wang, L. T., Meng, Y., Yu, L., Li, Y. Y., & Fu, Y. J. (2020). A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchemical Journal, 154, 104598. https://doi.org/10.1016/j.microc.2020.104598
- Gazioglu, I., Semen, S., Acar, O. O., Kolak, U., Sen, A., & Topcu, G. (2020). Triterpenoids and steroids isolated from Anatolian Capparis ovata and their activity on the expression of inflammatory cytokines. Pharmaceutical Biology, 58(1), 925–931. https://doi.org/10.1080/13880209.2020.1814356
- Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Mohamed Ahmed, I. A. (2020). Bioactive properties and phenolic compounds in bud, sprout, and fruit of Capparis spp. plants. Journal of Food Processing and Preservation, 44(3), e14357. https://doi.org/10.1111/jfpp.14357
- Gomes, T., Caponio, F., & Alloggio, V. (1999). Phenolic compounds of virgin olive oil: Influence of paste preperation techniques. Food Chemistry, 64, 203–209. https://doi.org/10.1016/S0308-8146(98)00146-0
- Grigorakis, S., Halahlah, A., & Makris, D. P. (2020). Batch stirred-tank green extraction of Salvia fruticosa Mill. polyphenols using newly designed citrate-based deep eutectic solvents and ultrasonication pretreatment. Applied Sciences, 10(14), 4774. https://doi.org/10.3390/app10144774
- Grimalt, M., Hernandez, F., Legua, P., Almansa, M. S., & Amoros, A. (2018). Physicochemical composition and antioxidant activity of three Spanish caper (Capparis spinosa L.) fruit cultivars in three stages of development. Scientia Horticulturae, 240, 509–515. https://doi.org/10.1016/j.scienta.2018.06.061
- Haminiuk, C. W. I., Plata-Oviedo, M. S. V., de Mattos, G., Carpes, S. T., & Branco, I. G. (2014). Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. Journal of Food Science and Technology, 51(10), 2862–2866. https://doi.org/10.1007/s13197-012-0759-z
- Horuz, E., Jaafar, H. J., & Maskan, M. (2017). Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology, 35(7), 849–859. https://doi.org/10.1080/07373937.2016.1222538
- Huang, M., Zhang, X., & Karangwa, E. (2015). Comparation sensory characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs by novel gradient temperature-elevating and traditional isothermal methods. Journal of Food Science and Technology, 52(2), 858–866. https://doi.org/10.1007/s13197-013-1083-y
- Jablonsky, M., Majova, V., Strizincova, P., Sima, J., & Jablonsky, J. (2020). Investigation of total phenolic content and antioxidant activities of spruce bark extracts isolated by deep eutectic solvents. Crystals, 10(5), 402–410. https://doi.org/10.3390/cryst10050402
- Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380. https://doi.org/10.1016/j.seppur.2017.01.055
- Kaltsa, O., Lakka, A., Grigorakis, S., Karageorgou, I., Batra, G., Bozinou, E., Lalas, S., & Makris, D. P. (2020). A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules, 25(4), 921. https://doi.org/10.3390/molecules25040921
- Kurtulbaş, E., Pekel, A. G., Bilgin, M., Makris, D. P., & Şahin, S. (2020). Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 4, 1–10. https://doi.org/10.1007/s13399-020-00606-3
- Lakka, A., Grigorakis, S., Kaltsa, O., Karageorgou, I., Batra, G., Bozinou, E., Lalas, S., & Makris, D. P. (2020). The effect of ultrasoundation pretreatment on the production of polyphenol-enriched extracts from Moringa oleifera L. (drumstick tree) using a novel bio-based deep eutectic solvent. Applied Sciences, 10(1), 220. https://doi.org/10.3390/app10010220
- Lanjekar, K. J., & Rathod, V. K. (2021). Green extraction of Glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochemistry, 102, 22–32. https://doi.org/10.1016/j.procbio.2020.11.023
- Li, L., Zhang, D., Wang, Y., Liu, F., Xu, Y., & Bao, H. (2021). Effective extraction of palmatine and berberine from Coptis chinensis by deep eutectic solvents-based ultrasound-assisted extraction. Journal of Analytical Methods in Chemistry, 2021, 1–10. https://doi.org/10.1155/2021/9970338
- Liu, Y., Li, J., Fu, R., Zhang, L., Wang, D., & Wang, S. (2019). Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Industrial Crops and Products, 140, 111620. https://doi.org/10.1016/j.indcrop.2019.111620
- Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A., & Demiate, I. M. (2019). Extraction optimization of phenolic extracts from carioca bean (Phaseolus vulgaris L.) using response surface methodology. Food Analytical Methods, 12(1), 148–159. https://doi.org/10.1007/s12161-018-1347-2
- Mahboubi, M., & Mahboubi, A. (2014). Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Polonica, 60(1), 39–48. https://doi.org/10.2478/hepo-2014-0004
10.2478/hepo-2014-0004 Google Scholar
- Mouratoglou, E., Malliou, V., & Makris, D. P. (2016). Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste and Biomass Valorization, 7(6), 1377–1387. https://doi.org/10.1007/s12649-016-9539-8
- Mylonaki, S., Kiassos, E., Makris, D. P., & Kefalas, P. (2008). Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Analytical and Bioanalytical Chemistry, 392(5), 977–985. https://doi.org/10.1007/s00216-008-2353-9
- Okur, M. E., Ayla, Ş., Çiçek Polat, D., Günal, M. Y., Yoltaş, A., & Biçeroğlu, Ö. (2018). Novel insight into wound healing properties of methanol extract of Capparis ovata Desf. var. palaestina Zohary fruits. Journal of Pharmacy and Pharmacology, 70(10), 1401–1413.
- Özcan, M. M., Ahmed, I. A. M., Juhaimi, F. A., Uslu, N., Osman, M. A., Gassem, M. A., Babiker, E. E., & Ghafoor, K. (2020). The influence of fermentation and bud sizes on antioxidant activity and bioactive compounds of three different size buds of Capparis ovata Desf. var. canescens plant. Journal of Food Science and Technology, 57(7), 2705–2712. https://doi.org/10.1007/s13197-020-04306-8
- Ozturk, B., Parkinson, C., & Gonzalez-Miquel, M. (2018). Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separation and Purification Technology, 206, 1–13. https://doi.org/10.1016/j.seppur.2018.05.052
- Pal, C. B. T., & Jadeja, G. C. (2019). Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. Journal of the Science of Food and Agriculture, 99(4), 1969–1979. https://doi.org/10.1002/jsfa.9395
- Robichaud, V., Bagheri, L., Salmieri, S., Aguilar-Uscanga, B. R., Millette, M., & Lacroix, M. (2020). Effect of γ-irradiation and food additives on the microbial inactivation of foodborne pathogens in infant formula. LWT, 139, 110547. https://doi.org/10.1016/j.lwt.2020.110547
- Roselló-Soto, E., Martí-Quijal, F. J., Cilla, A., Munekata, P. E., Lorenzo, J. M., Remize, F., & Barba, F. J. (2019). Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules, 24(4), 797. https://doi.org/10.3390/molecules24040797
- Singh, B. S., Lobo, H. R., Pinjari, D. V., Jarag, K. J., Pandit, A. B., & Shankarling, G. S. (2013). Ultrasound and deep eutectic solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrasonics Sonochemistry, 20(1), 287–293. https://doi.org/10.1016/j.ultsonch.2012.06.003
- Skarpalezos, D., & Detsi, A. (2019). Deep eutectic solvents as extraction media for valuable flavonoids from natural sources. Applied Sciences, 9(19), 4169. https://doi.org/10.3390/app9194169
- Sopee, M. S. M., Azlan, A., & Khoo, H. E. (2019). Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water. Journal of Food Measurement and Characterization, 13(3), 1958–1963. https://doi.org/10.1007/s11694-019-00114-7
- Sulaiman, I. S. C., Basri, M., Masoumi, H. R. F., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1–11. https://doi.org/10.1186/s13065-017-0285-1
- Sun, H. N., Mu, T. H., & Xi, L. S. (2017). Effect of pH, heat, and light treatments on the antioxidant activity of sweet potato leaf polyphenols. International Journal of Food Properties, 20(2), 318–332. https://doi.org/10.1080/10942912.2016.1160410
- Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2019). Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology, 56(3), 1360–1370. https://doi.org/10.1007/s13197-019-03610-2
- Wakeel, A., Jan, S. A., Ullah, I., Shinwari, Z. K., & Xu, M. (2019). Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ, 7, e7857. https://doi.org/10.7717/peerj.7857
- Wan Mahmood, W. M. A., Lorwirachsutee, A., Theodoropoulos, C., & Gonzalez-Miquel, M. (2019). Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris. ACS Sustainable Chemistry & Engineering, 7(5), 5018–5026. https://doi.org/10.1021/acssuschemeng.8b05642
- Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247, 117014. https://doi.org/10.1016/j.seppur.2020.117014
- Xu, M., Ran, L., Chen, N., Fan, X., Ren, D., & Yi, L. (2019). Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chemistry, 297, 124970. https://doi.org/10.1016/j.foodchem.2019.124970
- Yadav, A., & Pandey, S. (2014). Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. Journal of Chemical & Engineering Data, 59(7), 2221–2229. https://doi.org/10.1021/je5001796
- Yuniarti, E., Saputri, F., & Mun’im, A. (2019). Application of the natural deep eutectic solvent choline chloride-sorbitol to extract chlorogenic acid and caffeine from green coffee beans (Coffea canephora). Journal of Applied Pharmaceutical Science, 9(3), 82–90. https://doi.org/10.7324/JAPS.2019.90312
- Zainal-Abidin, M. H., Hayyan, M., Hayyan, A., & Jayakumar, N. S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1–23. https://doi.org/10.1016/j.aca.2017.05.012
- Zannou, O., & Koca, I. (2020). Optimization and stabilization of the antioxidant properties from Alkanet (Alkanna tinctoria) with natural deep eutectic solvents. Arabian Journal of Chemistry, 13(8), 6437–6450. https://doi.org/10.1016/j.arabjc.2020.06.002
- Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13(1), 1–26. https://doi.org/10.1186/s13020-018-0177-x
- Zhou, P., Wang, X., Liu, P., Huang, J., Wang, C., Pan, M., & Kuang, Z. (2018). Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Industrial Crops and Products, 120, 147–154. https://doi.org/10.1016/j.indcrop.2018.04.071
- Zia-Ul-Haq, M., Ćavar, S., Qayum, M., Imran, I., & Feo, V. D. (2011). Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. International Journal of Molecular Sciences, 12(12), 8846–8861. https://doi.org/10.3390/ijms12128846