Brazilian Cerrado wheat: Technological quality of genotypes grown in tropical locations
Maria Eugenia Araujo Silva Oliveira
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorThais de Oliveira Alves
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Formal analysis, Investigation, Methodology, Visualization
Search for more papers by this authorLuiz Carlos Gutkoski
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Writing - review & editing
Search for more papers by this authorMartha Zavariz de Miranda
Laboratório de Pós-Colheita, Embrapa Trigo, Passo Fundo, Brazil
Contribution: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Resources, Validation, Visualization, Writing - review & editing
Search for more papers by this authorMariana Simões Larraz Ferreira
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Cristina Yoshie Takeiti
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
Correspondence
Cristina Yoshie Takeiti, Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, Rio de Janeiro 22290-240, RJ, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorMaria Eugenia Araujo Silva Oliveira
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorThais de Oliveira Alves
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Formal analysis, Investigation, Methodology, Visualization
Search for more papers by this authorLuiz Carlos Gutkoski
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Writing - review & editing
Search for more papers by this authorMartha Zavariz de Miranda
Laboratório de Pós-Colheita, Embrapa Trigo, Passo Fundo, Brazil
Contribution: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Resources, Validation, Visualization, Writing - review & editing
Search for more papers by this authorMariana Simões Larraz Ferreira
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Contribution: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Cristina Yoshie Takeiti
Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Rio de Janeiro, Brazil
Embrapa Agroindústria de Alimentos, Rio de Janeiro, Brazil
Correspondence
Cristina Yoshie Takeiti, Food and Nutrition Graduate Program, Nutrition School, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, Rio de Janeiro 22290-240, RJ, Brazil.
Email: [email protected]
Contribution: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorAbstract
Brazilian Cerrado wheat has emerged as an alternative to expand a new agricultural frontier in tropical areas. In this study, technological quality of 34 samples grown in five locations situated in the Cerrado Mineiro was evaluated in terms of their grain, flour, and starch properties. Damaged starch was positively (p < .05) correlated with Single Kernel Characterization System parameters (r = 0.578) and pasting properties (r = 0.761), and negatively (p < .05) correlated with enthalpy (r = −0.400) and relative crystallinity (r = −0.379). The irrigation system strongly influenced the starch characteristics, rheological, and pasting properties. Piumhi location showed the highest mean of resistant starch (0.80 g/100g), bringing an interesting prebiotic appeal to these samples. Gluten index (mean = 90.6) and damaged starch (mean = 5.0%) values showed that genotypes present suitable standards for bakery products. This pioneering study highlights promising agronomic materials for cultivation in the Brazilian Cerrado region, which has great potential to produce tropical wheat.
Practical applications
Wheat is the second most significant staple grain after maize, constituting a strategic role in food security to the world economy. In Brazil, more than 90% of wheat is grown in traditional areas that include subtropical climates. In this scenario, Brazilian Cerrado has been standing out as a potential region for wheat cultivation to produce improver wheat class that is the main consumer-driven market. Wheat culture has been adapted under Cerrado conditions after massive investments regarding genetic improvement and integrated soil–water–nutrient–plant practices that allow high grain productivity. Thus, the characterization of wheat grain associated with flour rheological evaluation and starch profile is effective in predicting processing behavior and applicability in different bakery products. The results showed that irrigation system strongly influenced the rheological and pasting properties of starch. These samples showed suitable contents of dry gluten (11%–14%) and damaged starch (4.5%) for bakery products development.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data openly available in a public repository that issues datasets with DOIs.
REFERENCES
- AACC. (2010). Approved methods of analysis ( 11th ed.). Cereal & Grains Association.
- Ali, R., Khan, M. S., Sayeed, S. A., Ahmed, R., Muhammad, S., Saeed, G., & Al, E. T. (2014). Relantionship of damaged starch with some physicochemical parameters in assessment of wheat flour quality. Pakistan Journal of Botani, 46(6), 2217–2225.
- Barrera, G. N., León, A. E., & Ribotta, P. D. (2012). Effect of damaged starch on wheat starch thermal behavior. Starch - Stärke, 64(10), 786–793. https://doi.org/10.1002/star.201200022
- Bhatta, M., Regassa, T., Rose, D. J., Baenziger, P. S., Eskridge, K. M., Santrad, D. K., & Poudelb, R. (2017). Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat. Journal of the Science of Food and Agriculture, 97, 5311–5318. https://doi.org/10.1002/jsfa.8417
- Blanchard, C., Labouré, H., Verel, A., & Champion, D. (2012). Study of the impact of wheat flour type, flour particle size and protein content in a cake-like dough: Proton mobility and rheological properties assessment. Journal of Cereal Science, 56(3), 691–698. https://doi.org/10.1016/j.jcs.2012.08.005
- Brasil. (2010). Instrução Normativa no 38, de 30 de novembro de 2010. Regulamento técnico do trigo. Diário Oficial [da] República Federativa do Brasil, Brasília, seção 1, n. 29, p. 2, 1 dez (Vol. 151, pp. 10–17). Brasil.
- Castro, R. L. D., Caierão, E., Silva, M. S. E., Scheeren, P. L., Guarienti, E. M., & Miranda, M. Z. D. (2016). Número ideal de amostras para classificação comercial de cultivares de trigo no Brasil. Pesquisa Agropecuaria Brasileira, 51(7), 809–817. https://doi.org/10.1590/S0100-204X2016000700003
- CONAB. (2017). A cultura do trigo. Brasília-DF.
- CONAB. (2020). Acompanhamento safra brasileira de grãos (pp. 1–86). v.8 – Safra 2020, n. 3- Terceiro levantamento, Brasília, Dezembro 2020. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos/item/download/34779_9ec59c49528b037aadde144a7af2743f
- Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydrate Research, 227(C), 103–112. https://doi.org/10.1016/0008-6215(92)85063-6
- Dai, Z., Li, Y., Zhang, H., Yan, S., & Li, W. (2016). Effects of irrigation schemes on the characteristics of starch and protein in wheat (Triticum aestivum L.). Starch - Stärke, 68(5–6), 454–461. https://doi.org/10.1002/star.201500214
- Delwiche, S. R., Rausch, S. R., Tao, H., Breslauer, R. S., & Vinyard, B. T. (2020). Is it necessary to manage falling number in the field? Agrosystems, Geosciences and Environment, 3(1), 1–10. https://doi.org/10.1002/agg2.20014
10.1002/agg2.20014 Google Scholar
- Dupont, F. M., & Altenbach, S. B. (2003). Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science, 38(2), 133–146. https://doi.org/10.1016/S0733-5210(03)00030-4
- FAOSTAT. (2020). Production/yield quantities of wheat in world + (total). http://www.fao.org/faostat/en/#data/QC/visualize
- Flumignan, D. L., Lena, B. P., de Faria, R. T., Scholz, M. B. S., & Medina, C. C. (2013). Influence of irrigation on wheat crop. Engenharia Agricola, 33(1), 75–88. https://doi.org/10.1590/S0100-69162013000100009
- Guan, E., Bian, K., Yang, Y., Pang, J., Zhang, T., & Li, M. (2020). Ultrafine grinding of wheat flour: Effect of flour/starch granule profiles and particle size distribution on falling number and pasting properties. Food Science & Nutrition, 8(6), 1–7. https://doi.org/10.1002/fsn3.1431
- Guo, P., Yu, J., Wang, S., Wang, S., & Copeland, L. (2017). Effects of particle size and water content during cooking on the physicochemical properties and in vitro starch digestibility of milled durum wheat grains. Food Hydrocolloids, 77, 445–453. https://doi.org/10.1016/j.foodhyd.2017.10.021
- Gutkoski, L. C., Klein, B., Pagnussatt, F. A., & Pedó, I. (2007). Technological characteristics of wheat (Triticum aestivum L.) genotypes grown in the Brazilian Cerrado. Ciência e Agrotecnologia, 31(3), 786–792. https://doi.org/10.1590/S1413-70542007000300027
- He, H. Z., Yang, J., Zhang, Y., Quail, K. J., & Peña, R. J. (2004). Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 139(3), 257–267. https://doi.org/10.1007/s10681-004-3283-z
- He, Y., Lin, Y., Chen, C., Tsai, M., & Lin, A. H. (2019). Impacts of starch and the interactions between starch and other macromolecules on wheat falling number. Comprehensive Reviews in Food Science and Food Safety, 18, 641–654. https://doi.org/10.1111/1541-4337.12430
- Hidalgo, A., Brandolini, A., & Ratti, S. (2009). Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. Journal of Agricultural and Food Chemistry, 57, 6342–6348. https://doi.org/10.1021/jf901180q
- Hidalgo, A., Fongaro, L., & Brandolini, A. (2014). Wheat flour granulometry determines colour perception. Food Research International, 64, 363–370. https://doi.org/10.1016/j.foodres.2014.06.050
- Hong, J., An, D., Wang, M., Liu, C., Buckow, R., Li, L., Zheng, X., & Bian, K. (2021). Wheat noodles enriched with A-type and/or B-type wheat starch: Physical, thermal and textural properties of dough sheet and noodle samples from different noodle-making process. International Journal of Food Science and Technology, 56(6), 3111–3122. https://doi.org/10.1111/ijfs.14954
- Hook, S. C. W. (1984). Specific weight and wheat quality. Journal of the Science of Food and Agriculture, 35(10), 1136–1141. https://doi.org/10.1002/jsfa.2740351013
- Horstmann, S. W., Lynch, K. M., & Arendt, E. K. (2017). Starch characteristics linked to gluten-free products. Foods, 6(29), 1–21. https://doi.org/10.3390/foods6040029
- Hung, P., Maeda, T., Miskelly, D., Tsumori, R., & Morita, N. (2008). Physicochemical characteristics and fine structure of high-amylose wheat starches isolated from Australian wheat cultivars. Carbohydrate Polymers, 71, 656–663. https://doi.org/10.1016/j.carbpol.2007.07.015
- Jane, J. (2009). Structural features of starch granules II. In Starch ( 3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-746275-2.00006-9
10.1016/B978-0-12-746275-2.00006-9 Google Scholar
- Johansson, E., Branlard, G., Cuniberti, M., Flagella, Z., Hüsken, A., Nurit, E., & Vazquez, D. (2020). Genotypic and environmental effects on wheat technological and nutritional quality. In Wheat quality for improving processing and human health (pp. 171–204). Springer.
10.1007/978-3-030-34163-3_8 Google Scholar
- Johansson, E., Henriksson, T., Prieto-Linde, M. L., Andersson, S., Ashraf, R., & Rahmatov, M. (2020). Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat. Frontiers in Plant Science, 11, 1–15. https://doi.org/10.3389/fpls.2020.01067
- Johansson, E., Malik, A. H., Hussain, A., Rasheed, F., Newson, W. R., Plivelic, T., Kuktaite, R. (2013). Wheat gluten polymer structures : The impact of genotype, environment, and processing on their functionality in various applications. Cereal Biomacromolecules, 90(4), 367–376. https://doi.org/10.1094/CCHEM-08-12-0105-FI
- Kaplan Evlice, A., Pehlivan, A., Sanal, T., Salantur, A., Kilic, G., Dugan, G., Boyaci, I. H., & Koksel, H. (2020). Utilization potential of Glutograph in wheat breeding programs and the influence of genotype and environment on bread wheat quality. Cereal Chemistry, 97(3), 634–641. https://doi.org/10.1002/cche.10279
- Knight, J. W., & Olson, R. M. (1984). Wheat starch: Production, modification, and uses. In Starch: Chemistry and technology ( 2nd ed.). Food Science and Technology. https://doi.org/10.1016/B978-0-12-746270-7.50021-5
- Kundu, M., Khatkar, B. S., & Gulia, N. (2017). Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits. Food Chemistry, 226(1), 95–101. https://doi.org/10.1016/j.foodchem.2016.12.046
- Labuschagne, M. T., Geleta, N., & Osthoff, G. (2007). The influence of environment on starch content and amylose to amylopectin ratio in wheat. Starch - Staerke, 59(5), 234–238. https://doi.org/10.1002/star.200600542
- Lacerda, L. G., Colman, T. A. D., Bauab, T., da Silva Carvalho Filho, M. A., Demiate, I. M., de Vasconcelos, E. C., & Schnitzler, E. (2014). Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. Journal of Thermal Analysis and Calorimetry, 115(2), 1893–1899. https://doi.org/10.1007/s10973-013-3349-z
- León, A. E., Barrera, G. N., Pérez, G. T., Ribotta, P. D., & Rosell, C. M. (2006). Effect of damaged starch levels on flour-thermal behaviour and bread staling. European Food Research and Technology, 224(2), 187–192. https://doi.org/10.1007/s00217-006-0297-x
- Li, C., Wu, A., Yu, W., Hu, Y., Li, E., Zhang, C., & Liu, Q. (2020). Parameterizing starch chain-length distributions for structure-property relations. Carbohydrate Polymers, 241, 116390. https://doi.org/10.1016/j.carbpol.2020.116390
- Li, C., Zhou, D., Fan, T., Wang, M., Zhu, M., Ding, J., Zhu, X., Guo, W., & Shi, Y. C. (2020). Structure and physicochemical properties of two waxy wheat starches. Food Chemistry, 318, 1–7. https://doi.org/10.1016/j.foodchem.2020.126492
- Li, Q., Shi, S., Dong, Y., & Yu, X. (2021). Characterisation of amylose and amylopectin with various moisture contents after frying process: Effect of starch–lipid complex formation. International Journal of Food Science and Technology, 56(2), 639–647. https://doi.org/10.1111/ijfs.14712
- Li, W., Yan, S., Shi, X., Zhang, C., Shao, Q., Xu, F., & Wang, J. (2016). Starch granule size distribution from twelve wheat cultivars in east China's Huaibei region. Canadian Journal of Plant Science, 96(2), 176–182. https://doi.org/10.1139/cjps-2015-0048
- Liang, W., Blennow, A., Herburger, K., Zhong, Y., Wen, X., Liu, Y., & Liao, Y. (2021). Effects of supplemental irrigation on winter wheat starch structure and properties under ridge-furrow tillage and flat tillage. Carbohydrate Polymers, 270, 118310. https://doi.org/10.1016/j.carbpol.2021.118310
- Liu, C., Li, L., Hong, J., Zheng, X., Bian, K., Sun, Y., & Zhang, J. (2013). Effect of mechanically damaged starch on wheat flour, noodle and steamed bread making quality. International Journal of Food Science & Technology, 49(1), 253–260. https://doi.org/10.1111/ijfs.12306
- Madeira, R. A. V., Fernandes, A. F., Reis, W. P., de Carvalho, C. W. P., & Pereira, J. (2015). Technological characterization and classification of wheat lineages cultivated in the cerrado mineiro. Ciência e Agrotecnologia, 3, 283–290. https://doi.org/10.1590/S1413-70542015000300010
- Malik, A. H., Kuktaite, R., & Johansson, E. (2013). Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to bread-making quality. Journal of Cereal Science, 57(2), 170–174. https://doi.org/10.1016/j.jcs.2012.09.017
- Maphosa, L., Langridge, P., Taylor, H., Parent, B., Emebiri, L. C., Kuchel, H., Reynolds, M. P., Chalmers, K. J., Okada, A., Edwards, J., & Mather, D. E. (2014). Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theoretical and Applied Genetics, 127(7), 1607–1624. https://doi.org/10.1007/s00122-014-2322-y
- Mares, D. J., & Mrva, K. (2014). Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta, 240(6), 1167–1178. https://doi.org/10.1007/s00425-014-2172-5
- Miranda, M., Lambrecht, C., Souza, C. D., Biduski, B., Carlos, L., & Levien, N. (2020). Discrimination of the quality of Brazilian wheat genotypes and their use as whole-grains in human nutrition. Food Chemistry, 312(15), 126074. https://doi.org/10.1016/j.foodchem.2019.126074
- Miskelly, D. (2010). Processing wheat to optimise product quality. In Cereal grains: Assessing and managing quality. Woodhead Publishing Limited. https://doi.org/10.1016/B978-1-84569-563-7.50026-7
10.1533/9781845699529.4.431 Google Scholar
- Moiraghi, M., Sciarini, L. S., Paesani, C., León, A. E., & Pérez, G. T. (2019). Flour and starch characteristics of soft wheat cultivars and their effect on cookie quality. Journal of Food Science and Technology, 56(10), 4474–4481. https://doi.org/10.1007/s13197-019-03954-9
- Montagner Souza, T., de Miranda, M. Z., Mateus Prando, A., Tilley, M., Payton, M. E., & Rayas-Duarte, P. (2019). Gluten viscoelasticity: Rapid method for classification of soft-like wheat genotypes. Cereal Chemistry, 96(2), 167–181. https://doi.org/10.1002/cche.10128
- Mutwali, N. I. A., Mustafa, A. I., Gorafi, Y. S. A., & Ahmed, I. A. M. (2015). Effect of environment and genotypes on the physicochemical quality of the grains of newly developed wheat inbred lines. Food Science & Nutrition, 4(4), 1–13. https://doi.org/10.1002/fsn3.313
- Nhan, M. T., & Copeland, L. (2016). Effect of variety and growing environment on pasting and thermal properties of wheat starch. Starch - Staerke, 68(5–6), 436–445. https://doi.org/10.1002/star.201500243
- Nivelle, M. A., Remmerie, E., Bosmans, G. M., Vrinten, P., Nakamura, T., & Delcour, J. A. (2019). Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chemistry, 295(15), 110–119. https://doi.org/10.1016/j.foodchem.2019.05.049
- Pasinato, A., Cunha, G. R. D., Fontana, D. C., Monteiro, J. E. B. D. A., Nakai, A. M., & Oliveira, A. F. D. (2018). Potential area and limitations for the expansion of rainfed wheat in the Cerrado biome of Central Brazil. Pesquisa Agropecuária Brasileira, 53(7), 779–790. https://doi.org/10.1590/S0100-204X2018000700001
- Pauly, A., Pareyt, B., Fierens, E., & Delcour, J. A. (2013). Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: I. Current view on the role of puroindolines and polar lipids. Comprehensive Reviews in Food Science and Food Safety, 12(4), 413–426. https://doi.org/10.1111/1541-4337.12019
- Samaan, J., El-Khayat, G. H., Manthey, F. A., Fuller, M. P., & Brennan, C. S. (2006). Durum wheat quality: II. The relationship of kernel physicochemical composition to semolina quality and end product utilisation. International Journal of Food Science and Technology, 41, 47–55. https://doi.org/10.1111/j.1365-2621.2006.01313.x
- Sasaki, T., & Matsuki, J. (1998). Effect of wheat starch structure on swelling power. Cereal Chemistry, 75(4), 525–529. https://doi.org/10.1094/CCHEM.1998.75.4.525
- Shevkani, K., Singh, N., Bajaj, R., & Kaur, A. (2017). Wheat starch production, structure, functionality and applications—A review. International Journal of Food Science and Technology, 52(1), 38–58. https://doi.org/10.1111/ijfs.13266
- Siddiqi, R. A., Singh, T. P., Rani, M., Sogi, D. S., & Bhat, M. A. (2020). Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Frontiers in Nutrition, 7, 141. https://doi.org/10.3389/fnut.2020.00141
- Singh, S., Gupta, A. K., Gupta, S. K., & Kaur, N. (2010). Effect of sowing time on protein quality and starch pasting characteristics in wheat (Triticum aestivum L.) genotypes grown under irrigated and rain-fed conditions. Food Chemistry, 122(3), 559–565. https://doi.org/10.1016/j.foodchem.2010.03.010
- Song, Y., & Zheng, Q. (2007). Dynamic rheological properties of wheat flour dough and proteins. Trends in Food Science and Technology, 18(3), 132–138. https://doi.org/10.1016/j.tifs.2006.11.003
- Subira, J., Peña, R. J., Álvaro, F., Ammar, K., Ramdani, A., & Royo, C. (2014). Breeding progress in the pasta-making quality of durum wheat cultivars released in Italy and Spain during the 20th Century. Crop & Pasture Science, 65, 16–26. https://doi.org/10.1071/CP13238
- Szabó, B. P., Gyimes, E., Véha, A., & Horváth, Z. H. (2016). Flour quality and kernel hardness connection in winter wheat. Acta Universitatis Sapientiae, Alimentaria, 9(1), 33–40. https://doi.org/10.1515/ausal-2016-0003
- Taghouti, M., Gaboun, F., Nsarellah, N., Rhrib, R., Kamar, M., & Udupa, S. M. (2010). Genotype × Environment interaction for quality traits in durum wheat cultivars adapted to different environments. African Journal of Biotechnology, 9(21), 3054–3062. https://www.academicjournals.org/AJB
- Tozatti, P., Güldiken, B., Fleitas, M. C., Chibbar, R. N., Hucl, P., & Nickerson, M. T. (2020). The interrelationships between wheat quality, composition, and dough rheology for a range of Western Canadian wheat cultivars. Cereal Chemistry, 97(5), 1010–1025. https://doi.org/10.1002/cche.10324
- Troccoli, A., Borrelli, G. M., De Vita, P., Fares, C., & Di Fonzo, N. (2000). Durum wheat quality: A multidisciplinary concept. Journal of Cereal Science, 32(2), 99–113. https://doi.org/10.1006/jcrs.2000.0322
- Vázquez, D., Berger, A. G., Cuniberti, M., Bainotti, C., de Miranda, M. Z., Scheeren, P. L., Jobet, C., Zúñiga, J., Cabrera, G., Verges, R., & Peña, R. J. (2012). Influence of cultivar and environment on quality of Latin American wheats. Journal of Cereal Science, 56(2), 196–203. https://doi.org/10.1016/j.jcs.2012.03.004
- Vignola, M. B., Baroni, V., & Pérez, G. T. (2016). Genotypic and environmental effects on starch properties of Argentinean wheat flours. Starch - Staerke, 68(11–12), 1065–1072. https://doi.org/10.1002/star.201600067
- Wang, S., Yu, J., Xin, Q., Wang, S., & Copeland, L. (2017). Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control, 73, 230–236. https://doi.org/10.1016/j.foodcont.2016.08.002
- Wu, F., Li, J., Yang, N., Chen, Y., Jin, Y., & Xu, X. (2017). The roles of starch structures in the pasting properties of wheat starch with different degrees of damage. Starch - Stärke, 70(5–6), 1–31. https://doi.org/10.1002/star.201700190