The effect of electrospun polylactic acid/chitosan nanofibers on the low density polyethylene/ploy lactic acid film as bilayer antibacterial active packaging films
Samira Dehghani
Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
Search for more papers by this authorCorresponding Author
Karamatollah Rezaei
Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
Correspondence
Karamatollah Rezaei, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran.
Email: [email protected]
Search for more papers by this authorHamed Hamishehkar
Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
Search for more papers by this authorAbdulrasoul Oromiehie
Polymer and Petrochemical Research Institute of Iran, Tehran, Iran
Search for more papers by this authorSamira Dehghani
Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
Search for more papers by this authorCorresponding Author
Karamatollah Rezaei
Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
Correspondence
Karamatollah Rezaei, Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran.
Email: [email protected]
Search for more papers by this authorHamed Hamishehkar
Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
Search for more papers by this authorAbdulrasoul Oromiehie
Polymer and Petrochemical Research Institute of Iran, Tehran, Iran
Search for more papers by this authorAbstract
Bilayer antibacterial films were prepared using electrospun polylactic acid (PLA)/chitosan (Ch) nanofiber on low-density polyethylene (LDPE)/PLA films. Blends of Ch and PLA with the selected ratios of 5.0%, 10.0%, 15.0%, and 20.0% Ch were electrospun on the surface of LDPE/PLA composite film. Scanning electron microscopic images indicated a smooth and bead-free surface for all composite nanofibers with a diameter range from 50–200 nm. Fourier transform infrared spectra depict the presence of PLA and CH in the nanofiber. Hydrophobicity analysis showed that the PLA/Ch layer increase the hydrophobicity of bilayer films. The water vapor permeabilities of bilayer films were lower than those of LDPE/PLA film. The presence of PLA/Ch nanofiber layer resulted in the reduction in the oxygen permeability of bilayer films. When Ch content reached 10.0%, the bilayer films showed antibacterial activities against Escherichia coli and Staphylococcus aureus.
Novelty impact statement
Blends of chitosan and polylactic acid (PLA) was electrospun on to the surface of a low-density polyethylene (LDPE)/PLA film to produce bilayer antibacterial films. Electrospun nanofiber layers improved the antibacterial properties of the films and also reduced the oxygen and water vapor permeability levels of LDPE/PLA composite films without major interferences with their intrinsic physical and barrier properties.
CONFLICTS OF INTEREST
The authors have declared no conflicts of interest for this article
Open Research
DATA AVAILABILITY STATEMENT
Data will be available upon request.
REFERENCES
- Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustainable Materials and Technologies, 26, e00215. https://doi.org/10.1016/j.susmat.2020.e00215
- Ardekani-Zadeh, A. H., & Hosseini, S. F. (2019). Electrospun essential oil-doped chitosan/poly (ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydrate Polymers, 223, 115108. https://doi.org/10.1016/j.carbpol.2019.115108
- Arkoun, M., Daigle, F., Heuzey, M. C., & Ajji, A. (2017). Mechanism of action of electrospun chitosan-based nanofibers against meat spoilage and pathogenic bacteria. Molecules, 22(4), 585. https://doi.org/10.3390/molecules22040585
- Arslan, F., & Dilsiz, N. (2020). Flame resistant properties of LDPE/PLA blends containing halogen-free flame retardant. Journal of Applied Polymer Science, 137(32), 48960. https://doi.org/10.1002/app.48960
- ASTM E96-00, Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, PA, 2000. https://doi.org/10.1520/E0096-00
10.1520/E0096?00 Google Scholar
- Bee, S. T., Sin, L. T., Ratnam, C. T., Kavee-Raaz, R. R. D., Tee, T. T., Hui, D., & Rahmat, A. R. (2015). Electron beam irradiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Composites Part B: Engineering, 79, 35–46. https://doi.org/10.1016/j.compositesb.2015.04.019
- Cao, G., Wang, C., Fan, Y., & Li, X. (2020). Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. Materials Science and Engineering: C, 109, 110538. https://doi.org/10.1016/j.msec.2019.110538
- Dai, F., Huang, J., Liao, W., Li, D., Wu, Y., Huang, J., Long, Y., Yuan, M., Xiang, W., Tao, F., Cheng, Y., & Deng, H. (2019). Chitosan-TiO2 microparticles LBL immobilized nanofibrous mats via electrospraying for antibacterial applications. International Journal of Biological Macromolecules, 135, 233–239. https://doi.org/10.1016/j.ijbiomac.2019.05.145
- DeGruson, M. L. (2016). Biobased packaging. In S. Geoffrey (Ed.), Reference module in food science (pp. 1–5). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03206-6
10.1016/B978-0-08-100596-5.03206-6 Google Scholar
- Dodero, A., Brunengo, E., Alloisio, M., Sionkowska, A., Vicini, S., & Castellano, M. (2020). Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydrate Polymers, 235, 115976. https://doi.org/10.1016/j.carbpol.2020.115976
- El-Sayed, S. M., El-Sayed, H. S., Ibrahim, O. A., & Youssef, A. M. (2020). Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydrate Polymers, 239, 116234. https://doi.org/10.1016/j.carbpol.2020.116234
- Fabra, M. J., López-Rubio, A., Ambrosio-Martín, J., & Lagaron, J. M. (2016). Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloids, 61, 261–268. https://doi.org/10.1016/j.foodhyd.2016.05.025
- Fabra, M. J., López-Rubio, A., Sentandreu, E., & Lagaron, J. M. (2016). Development of multilayer corn starch-based food packaging structures containing β-carotene by means of the electro-hydrodynamic processing. Starch-Stärke, 68(7–8), 603–610. https://doi.org/10.1002/star.201500154
- Fasihnia, S. H., Peighambardoust, S. H., & Peighambardoust, S. J. (2018). Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. Journal of Food Processing and Preservation, 42(2), e13488. https://doi.org/10.1111/jfpp.13488
- Fasihnia, S. H., Peighambardoust, S. H., Peighambardoust, S. J., & Oromiehie, A. (2018). Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packaging and Shelf Life, 18, 87–94. https://doi.org/10.1016/j.fpsl.2018.10.001
- Goh, Y. F., Akram, M., Alshemary, A., & Hussain, R. (2016). Antibacterial polylactic acid/chitosan nanofibers decorated with bioactive glass. Applied Surface Science, 387, 1–7. https://doi.org/10.1016/j.apsusc.2016.06.054
- Haghju, S., Bari, M. R., & Khaled-Abad, M. A. (2018). Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydrate Polymers, 200, 137–143. https://doi.org/10.1016/j.carbpol.2018.07.096
- Hosseini, S. F., Javidi, Z., & Rezaei, M. (2016). Efficient gas barrier properties of multi-layer films based on poly (lactic acid) and fish gelatin. International Journal of Biological Macromolecules, 92, 1205–1214. https://doi.org/10.1016/j.ijbiomac.2016.08.034
- Huntrakul, K., Yoksan, R., Sane, A., & Harnkarnsujarit, N. (2020). Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packaging and Shelf Life, 24, 100480. https://doi.org/10.1016/j.fpsl.2020.100480
- Januariyasa, I. K., Ana, I. D., & Yusuf, Y. (2020). Nanofibrous poly (vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Materials Science and Engineering: C, 107, 110347. https://doi.org/10.1016/j.msec.2019.110347
- Jiang, S., Lv, J., Ding, M., Li, Y., Wang, H., & Jiang, S. (2016). Release behavior of tetracycline hydrochloride loaded chitosan/poly (lactic acid) antimicrobial nanofibrous membranes. Materials Science and Engineering: C, 59, 86–91. https://doi.org/10.1016/j.msec.2015.10.005
- Kalantari, K., Afifi, A. M., Jahangirian, H., & Webster, T. J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydrate Polymers, 207, 588–600. https://doi.org/10.1016/j.carbpol.2018.12.011
- Khan, F., Pham, D. T. N., Oloketuyi, S. F., Manivasagan, P., Oh, J., & Kim, Y. M. (2020). Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 185, 110627. https://doi.org/10.1016/j.colsurfb.2019.110627
- Kumar, T. S. M., Kumar, K. S., Rajini, N., Siengchin, S., Ayrilmis, N., & Rajulu, A. V. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074. https://doi.org/10.1016/j.compositesb.2019.107074
- Li, M. C., Wu, Q., Song, K., Cheng, H. N., Suzuki, S., & Lei, T. (2016). Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation. ACS Sustainable Chemistry and Engineering, 4(8), 4385–4395. https://doi.org/10.1021/acssuschemeng.6b00981
- Lin, C. C., Fu, S. J., Lin, Y. C., Yang, I. K., & Gu, Y. (2014). Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. International Journal of Biological Macromolecules, 68, 39–47. https://doi.org/10.1016/j.ijbiomac.2014.04.039
- Liu, Y., Wang, S., & Zhang, R. (2017). Composite poly (lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. International Journal of Biological Macromolecules, 103, 1130–1137. https://doi.org/10.1016/j.ijbiomac.2017.05.101
- Liu, Y., Yuan, Y., Duan, S., Li, C., Hu, B., Liu, A., Wu, D., Cui, H., Lin, L., He, J., & Wu, W. (2020). Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules, 155, 249–259. https://doi.org/10.1016/j.ijbiomac.2020.03.217
- Ma, L., Shi, X., Zhang, X., & Li, L. (2019). Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123956. https://doi.org/10.1016/j.colsurfa.2019.123956
- Munteanu, B., Sacarescu, L., Vasiliu, A.-L., Hitruc, G., Pricope, G., Sivertsvik, M., Rosnes, J., & Vasile, C. (2018). Antioxidant/antibacterial electrospun nanocoatings applied onto PLA films. Materials, 11(10), 1973. https://doi.org/10.3390/ma11101973
- Quetzeri-Santiago, M. A., Castrejón-Pita, A. A., & Castrejón-Pita, J. R. (2019). The effect of surface roughness on the contact line and splashing dynamics of impacting droplets. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-51490-5
- Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149–155. https://doi.org/10.1016/j.foodchem.2014.04.026
- Rogovina, S., Prut, E., Aleksanyan, K., Krasheninnikov, V., Perepelitsyna, E., Shashkin, D., Ivanushkina, N., & Berlin, A. (2019). Production and investigation of structure and properties of polyethylene–polylactide composites. Journal of Applied Polymer Science, 136(22), 47598. https://doi.org/10.1002/app.47598
- Sharma, R., Jafari, S. M., & Sharma, S. (2020). Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 112, 107086. https://doi.org/10.1016/j.foodcont.2020.107086
- Siqueira, N. M., Garcia, K. C., Bussamara, R., Both, F. S., Vainstein, M. H., & Soares, R. M. (2015). Poly (lactic acid)/chitosan fiber mats: Investigation of effects of the support on lipase immobilization. International Journal of Biological Macromolecules, 72, 998–1004. https://doi.org/10.1016/j.ijbiomac.2014.08.048
- Stoleru, E., Dumitriu, R. P., Munteanu, B. S., Zaharescu, T., Tănase, E. E., Mitelut, A., Ailiesei, G.-L., & Vasile, C. (2016). Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Applied Surface Science, 367, 407–417. https://doi.org/10.1016/j.apsusc.2016.01.200
- Trongsatitkul, T., & Chaiwong, S. (2017). In situ fiber-reinforced composite films of poly(lactic acid)/low-density polyethylene blends: Effects of composition on morphology, transport and mechanical properties. Polymer International, 66(11), 1456–1462. https://doi.org/10.1002/pi.5449
- Wang, J., Wu, Y., Cao, Y., Li, G., & Liao, Y. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298, 1107–1112. https://doi.org/10.1007/s00396-020-04680-x
- Wu, Z., Huang, X., Li, Y. C., Xiao, H., & Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199, 210–218. https://doi.org/10.1016/j.carbpol.2018.07.030
- Xu, J., Xia, R., Zheng, L., Yuan, T., & Sun, R. (2019). Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydrate Polymers, 224, 115164. https://doi.org/10.1016/j.carbpol.2019.115164
- Xu, T., Yang, H., Yang, D., & Yu, Z. Z. (2017). Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Applied Materials & Interfaces, 9(25), 21094–21104. https://doi.org/10.1021/acsami.7b01176
- Youssef, A. M., & El-Sayed, S. M. (2018). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, 193, 19–27. https://doi.org/10.1016/j.carbpol.2018.03.088
- Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 19(2), 479–502. https://doi.org/10.1111/1541-4337.12536