Volume 78, Issue 7 pp. 865-882
research papers

Biochemical and structural insights into an unusual, alkali-metal-independent S-adenosyl-l-homocysteine hydrolase from Synechocystis sp. PCC 6803

Piotr H. Malecki

Piotr H. Malecki

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Prokaryotic Organisms, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Barbara Imiolczyk

Barbara Imiolczyk

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Prokaryotic Organisms, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Jakub Barciszewski

Jakub Barciszewski

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Laboratory of Protein Engineering, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Justyna Czyrko-Horczak

Justyna Czyrko-Horczak

Faculty of Chemistry, University of Bialystok, Department of Structural Chemistry, Ciolkowskiego 1K, Bialystok, 15-245 Poland

Search for more papers by this author
Joanna Sliwiak

Joanna Sliwiak

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Laboratory of Protein Engineering, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Magdalena Gawel

Magdalena Gawel

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Prokaryotic Organisms, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Katarzyna Wozniak

Katarzyna Wozniak

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Prokaryotic Organisms, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Mariusz Jaskolski

Mariusz Jaskolski

Faculty of Chemistry, A. Mickiewicz University, Department of Crystallography, Uniwersytetu Poznańskiego 8, Poznan, 61-614 Poland

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Eukaryotes, Noskowskiego 12/14, Poznan, 61-704 Poland

Search for more papers by this author
Krzysztof Brzezinski

Corresponding Author

Krzysztof Brzezinski

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structural Biology of Prokaryotic Organisms, Noskowskiego 12/14, Poznan, 61-704 Poland

Krzysztof Brzezinski, e-mail: [email protected]Search for more papers by this author
First published: 14 June 2022

Abstract

The mesophilic cyanobacterium Synechocystis sp. PCC 6803 encodes an S-adenosyl-l-homocysteine hydrolase (SAHase) of archaeal origin in its genome. SAHases are essential enzymes involved in the regulation of cellular S-adenosyl-l-methionine (SAM)-dependent methylation reactions. They are usually active as homotetramers or, less commonly, as homodimers. A SAHase subunit is composed of two major domains: a cofactor (NAD+)-binding domain and a substrate (S-adenosyl-l-homocysteine)-binding domain. These are connected by a hinge element that is also a coordination site for an alkali-metal cation that influences domain movement during the catalytic cycle. Typically, the highest activity and strongest substrate binding of bacterial SAHases are observed in the presence of K+ ions. The SAHase from Synechocystis (SynSAHase) is an exception in this respect. Enzymatic and isothermal titration calorimetry studies demonstrated that in contrast to K+-dependent SAHases, the activity and ligand binding of SynSAHase are not affected by the presence of any particular alkali ion. Moreover, in contrast to other SAHases, the cyanobacterial enzyme is in an equilibrium of two distinct oligomeric states corresponding to its dimeric and tetrameric forms in solution. To explain these phenomena, crystal structures of SynSAHase were determined for the enzyme crystallized in the presence of adenosine (a reaction byproduct or substrate) and sodium or rubidium cations. The structural data confirm that while SynSAHase shares common structural features with other SAHases, no alkali metal is coordinated by the cyanobacterial enzyme as a result of a different organization of the macromolecular environment of the site that is normally supposed to coordinate the metal cation. This inspired the generation of SynSAHase mutants that bind alkali-metal cations analogously to K+-dependent SAHases, as confirmed by crystallographic studies. Structural comparisons of the crystal structure of SynSAHase with other experimental models of SAHases suggest a possible explanation for the occurrence of the cyanobacterial enzyme in the tetrameric state. On the other hand, the reason for the existence of SynSAHase in the dimeric state in solution remains elusive.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.