Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies
Alok Sharma
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560 012
Search for more papers by this authorK. Sekar
Bioinformatics Centre, Supercomputer Education and Research Centre, Bangalore, India 560 012
Search for more papers by this authorCorresponding Author
M. Vijayan
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560 012
Molecular Biophysics Unit, Indian Institute of Science, Bangalore—560 012, India===Search for more papers by this authorAlok Sharma
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560 012
Search for more papers by this authorK. Sekar
Bioinformatics Centre, Supercomputer Education and Research Centre, Bangalore, India 560 012
Search for more papers by this authorCorresponding Author
M. Vijayan
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India 560 012
Molecular Biophysics Unit, Indian Institute of Science, Bangalore—560 012, India===Search for more papers by this authorAbstract
Molecular dynamics simulations have been carried out on all the jacalin–carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin–carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin–carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin–carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22486_sm_suppfig1.pdf796.6 KB | Figure S1: Rmsd for Cα atoms of jacalin subunits. (a) Uncomplexed subunits derived from complexes with Methyl-α-galactose (black), Methyl-α-mannose (red), Methyl-α-glucose (green), β-Galactose (blue). (b) Complexes of jacalin subunit with Methylα-galactose (black), Methyl-α-mannose (red), Methyl-α-glucose (green), Methyl-α-GalNAc (blue) (c) Complexes of jacalin subunit with β-Galactose (black), β-Mannose (red), β-Glucose (green) (d) Complexes of jacalin subunit with T-antigen (black), Methyl-T-antigen (red), Gal-β-1,3-GalNAc-α-O-methyl (green) and Mellibiose (blue). |
PROT_22486_sm_suppfig2.pdf173.3 KB | Figure S2: Rmsd for Cα atoms of jacalin tetramers derived from complexes with β-Galactose (black) and Methyl-α-mannose (red). |
PROT_22486_sm_suppfig3.pdf181.2 KB | Figure S3: ϕ-ψmaps for conformational ensembles of the Jacalin-Methyl-α-galactose complex obtained from 15 ns and 50 ns simulations. |
PROT_22486_sm_suppfig4.pdf446.3 KB | Figure S4: Percentage area coverage in Ramachandran ϕ-ψmap by the native subunit in 50 ns simulation (black) and the combined coverage in four 15ns simulations (red). Percentage area was calculated employing the protocol as mentioned in PNAS, 104, 2661-2666, 2006. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Sharon N,Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004; 14: 53R–62R.
- 2 Weis WI,Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 1996; 65: 441–473.
- 3 Loris R,Hamelryck T,Bouckaert J,Wyns L. Legume lectin structure. Biochim Biophys Acta 1998; 1383: 9–36.
- 4 Wirth M,Kneuer C,Lehr CM,Gabor F. Lectin-mediated drug delivery: discrimination between cytoadhesion and cytoinvasion and evidence for lysosomal accumulation of wheat germ agglutinin in the Caco-2 model. J Drug Target 2002; 10: 439–448.
- 5 Vijayan M,Chandra N. Lectins. Curr Opin Struct Biol 1999; 9: 707–714.
- 6 Jeyaprakash AA,Srivastav A,Surolia A,Vijayan M. Structural basis for the carbohydrate specificities of artocarpin: variation in the length of a loop as a strategy for generating ligand specificity. J Mol Biol 2004; 338: 757–770.
- 7 Bouckaert J,Hamelryck T,Wyns L,Loris R. Novel structures of plant lectins and their complexes with carbohydrates. Curr Opin Struct Biol 1999; 9: 572–577.
- 8 Kulkarni KA,Katiyar S,Surolia A,Vijayan M,Suguna K. Generation of blood group specificity: new insights from structural studies on the complexes of A- and B-reactive saccharides with basic winged bean agglutinin. Proteins 2007; 68: 762–769.
- 9 Sankaranarayanan R,Sekar K,Banerjee R,Sharma V,Surolia A,Vijayan M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat Struct Biol 1996; 3: 596–603.
- 10 Jeyaprakash AA,Geetha Rani P,Banuprakash Reddy G,Banumathi S,Betzel C,Sekar K,Surolia A,Vijayan M. Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes. J Mol Biol 2002; 321: 637–645.
- 11 Banerjee R,Dhanaraj V,Mahanta SK,Surolia A,Vijayan M. Preparation and X-ray characterization of four new crystal forms of jacalin, a lectin from Artocarpus integrifolia. J Mol Biol 1991; 221: 773–776.
- 12 Jeyaprakash AA,Katiyar S,Swaminathan CP,Sekar K,Surolia A,Vijayan M. Structural basis of the carbohydrate specificities of jacalin: an X-ray and modeling study. J Mol Biol 2003; 332: 217–228.
- 13 Arockia Jeyaprakash A,Jayashree G,Mahanta SK,Swaminathan CP,Sekar K,Surolia A,Vijayan M. Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity. J Mol Biol 2005; 347: 181–188.
- 14 Goel M,Anuradha P,Kaur KJ,Maiya BG,Swamy MJ,Salunke DM. Porphyrin binding to jacalin is facilitated by the inherent plasticity of the carbohydrate-binding site: novel mode of lectin-ligand interaction. Acta Crystallogr D Biol Crystallogr 2004; 60: 281–288.
- 15 Gupta D,Rao NV,Puri KD,Matta KL,Surolia A. Thermodynamic and kinetic studies on the mechanism of binding of methylumbelliferyl glycosides to jacalin. J Biol Chem 1992; 267: 8909–8918.
- 16 Mahanta SK,Sastry MV,Surolia A. Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia agglutinin). A thermodynamic and circular-dichroism spectroscopic study. Biochem J 1990; 265: 831–840.
- 17 Pineau N,Brugier JC,Breux JP,Becq-Giraudon B,Descamps JM,Aucouturier P,Preud'homme JL. Stimulation of peripheral blood lymphocytes of HIV-infected patients by jacalin, a lectin mitogenic for human CD4+ lymphocytes. AIDS 1989; 3: 659–663.
- 18 Pineau N,Aucouturier P,Brugier JC,Preud'homme JL. Jacalin: a lectin mitogenic for human CD4 T lymphocytes. Clin Exp Immunol 1990; 80: 420–425.
- 19 Kabir S. Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. J Immunol Methods 1998; 212: 193–211.
- 20 Bunn-Moreno MM,Campos-Neto A. Lectin(s) extracted from seeds of Artocarpus integrifolia (jackfruit): potent and selective stimulator(s) of distinct human T and B cell functions. J Immunol 1981; 127: 427–429.
- 21 Bourne Y,Astoul CHs,Zamboni Vr,Peumans WJ,Menu-Bouaouiche L,Van Damme EJM,Barre A,Rougé P. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 2002; 364: 173–180.
- 22 Pratap JV,Bradbrook GM,Reddy GB,Surolia A,Raftery J,Helliwell JR,Vijayan M. The combination of molecular dynamics with crystallography for elucidating protein-ligand interactions: a case study involving peanut lectin complexes with T-antigen and lactose. Acta Crystallogr D Biol Crystallogr 2001; 57: 1584–1594.
- 23 Mishra NK,Kulhanek P,Snajdrova L,Petrek M,Imberty A,Koca J. Molecular dynamics study of Pseudomonas aeruginosa lectin-II complexed with monosaccharides. Proteins 2008; 72: 382–392.
- 24 Konidala P,Niemeyer B. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics. Biophys Chem 2007; 128: 215–230.
- 25 Bradbrook GM,Forshaw JR,Perez S. Structure/thermodynamics relationships of lectin-saccharide complexes: the Erythrina corallodendron case. Eur J Biochem 2000; 267: 4545–4555.
- 26 Bryce RA,Hillier IH,Naismith JH. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Biophys J 2001; 81: 1373–1388.
- 27 Di Lella S,Marti MA,Alvarez RM,Estrin DA,Ricci JC. Characterization of the galectin-1 carbohydrate recognition domain in terms of solvent occupancy. J Phys Chem B 2007; 111: 7360–7366.
- 28 Kaushik S,Mohanty D,Surolia A. Role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys J 2008; 96: 21–34.
- 29 Fujimoto YK,Terbush RN,Patsalo V,Green DF. Computational models explain the oligosaccharide specificity of cyanovirin-N. Protein Sci 2008; 17: 2008–2014.
- 30 Colombo G,Meli M,Canada J,Asensio JL,Jimenez-Barbero J. Toward the understanding of the structure and dynamics of protein-carbohydrate interactions: molecular dynamics studies of the complexes between hevein and oligosaccharidic ligands. Carbohydr Res 2004; 339: 985–994.
- 31 Bradbrook GM,Gleichmann T,Harrop SJ,Habash J,Raftery J,Kalb J (Gilboa),Yariv J,Hillier IH,Helliwell JR. X-ray and molecular dynamics studies of concanavalin-A glucoside and mannoside complexes: relating structure to thermodynamics of binding. J Chem Soc Faraday Trans 1998; 94: 1603–1611.
- 32 Van Der Spoel D,Lindahl E,Hess B,Groenhof G,Mark AE,Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem 2005; 26: 1701–1718.
- 33 Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am chem Soc 1996; 118: 11225–11236.
- 34 Kirschner KN,Yongye AB,Tschampel SM,Gonzalez-Outeirino J,Daniels CR,Foley BL,Woods RJ. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 2008; 29: 622–655.
- 35 Darden T,York D,Pedersen L. Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 36 Berk Hess HB,Berendsen HJC,Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997; 18: 1463–1472.
- 37 Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JA,Jr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA. Gaussian 03, Revision B.03. Wallingford CT: Gaussian, Inc.; 2004.
- 38 Sujatha MS,Sasidhar YU,Balaji PV. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins. Protein Sci 2004; 13: 2502–2514.
- 39 Schuttelkopf AW,van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004; 60: 1355–1363.
- 40 Sumathi K,Ananthalakshmi P,Roshan MNAM,Sekar K. 3dSS: 3D structural superposition. Nucleic Acids Res 2006; 34: W128–W132.
- 41 Hussain AS,Shanthi V,Sheik SS,Jeyakanthan J,Selvarani P,Sekar K. PDB Goodies—a web-based GUI to manipulate the Protein Data Bank file. Acta Crystallogr D Biol Crystallogr 2002; 58: 1385–1386.
- 42 Cohen G. ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions. J Appl Crystallogr 1997; 30: 1160–1161.
- 43 Jonassen I,Collins JF,Higgins DG. Finding flexible patterns in unaligned protein sequences. Protein Sci 1995; 4: 1587–1595.
- 44 Jonassen I. Efficient discovery of conserved patterns using a pattern graph. Comput Appl Biosci 1997; 13: 509–522.
- 45 Schneider TR. Objective comparison of protein structures: error-scaled difference distance matrices. Acta Crystallogr D Biol Crystallogr 2000; 56: 714–721.
- 46 Schneider TR. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallogr D Biol Crystallogr 2002; 58: 195–208.
- 47 Sadasivan C,Nagendra HG,Vijayan M. Plasticity, hydration and accessibility in ribonuclease A. The structure of a new crystal form and its low-humidity variant. Acta Crystallogr D Biol Crystallogr 1998; 54: 1343–1352.
- 48 Biswal BK,Sukumar N,Vijayan M. Hydration, mobility and accessibility of lysozyme: structures of a pH 6.5 orthorhombic form and its low-humidity variant and a comparative study involving 20 crystallographically independent molecules. Acta Crystallogr D Biol Crystallogr 2000; 56: 1110–1119.
- 49 Kundhavai Natchiar S,Arockia Jeyaprakash A,Ramya TN,Thomas CJ,Suguna K,Surolia A,Vijayan M. Structural plasticity of peanut lectin: an X-ray analysis involving variation in pH, ligand binding and crystal structure. Acta Crystallogr D Biol Crystallogr 2004; 60: 211–219.
- 50 Kishan RV,Chandra NR,Sudarsanakumar C,Suguna K,Vijayan M. Water-dependent domain motion and flexibility in ribonuclease A and the invariant features in its hydration shell. An X-ray study of two low-humidity crystal forms of the enzyme. Acta Crystallogr D Biol Crystallogr 1995; 51: 703–710.
- 51 Adhikari P,Bachhawat-Sikder K,Thomas CJ,Ravishankar R,Jeyaprakash AA,Sharma V,Vijayan M,Surolia A. Mutational analysis at Asn-41 in peanut agglutinin. A residue critical for the binding of the tumor-associated Thomsen-Friedenreich antigen. J Biol Chem 2001; 276: 40734–40739.
- 52 Banerjee R,Mande SC,Ganesh V,Das K,Dhanaraj V,Mahanta SK,Suguna K,Surolia A,Vijayan M. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc Natl Acad Sci USA 1994; 91: 227–231.
- 53 Tempel W,Tschampel S,Woods RJ. The xenograft antigen bound to Griffonia simplicifolia lectin 1-B(4). X-ray crystal structure of the complex and molecular dynamics characterization of the binding site. J Biol Chem 2002; 277: 6615–6621.
- 54 Naidoo KJ,Denysyk D,Brady JW. Molecular dynamics simulations of the N-linked oligosaccharide of the lectin from Erythrina corallodendron. Protein Eng 1997; 10: 1249–1261.
- 55 Boehr DD,Wright PE. Biochemistry. How do proteins interact? Science 2008; 320: 1429–1430.
- 56 Lange OF,Lakomek NA,Fares C,Schroder GF,Walter KF,Becker S,Meiler J,Grubmuller H,Griesinger C,de Groot BL. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 2008; 320: 1471–1475.
- 57 Tsai CJ,Kumar S,Ma B,Nussinov R. Folding funnels, binding funnels, and protein function. Protein Sci 1999; 8: 1181–1190.
- 58 Kumar S,Ma B,Tsai CJ,Sinha N,Nussinov R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 2000; 9: 10–19.
- 59 Ma B,Kumar S,Tsai CJ,Nussinov R. Folding funnels and binding mechanisms. Protein Eng 1999; 12: 713–720.
- 60 Tsai CJ,Ma B,Nussinov R. Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci USA 1999; 96: 9970–9972.
- 61 Bruschweiler S,Schanda P,Kloiber K,Brutscher B,Kontaxis G,Konrat R,Tollinger M. Direct observation of the dynamic process underlying allosteric signal transmission. J Am Chem Soc 2009; 131: 3063–3068.
- 62
International Union of Pure and Applied Chemistry and International Union of Biochemistry.
Symbols for specifying the conformation of polysaccharide chains.
Pure Appl Chem
1983;
55:
1269–1272.
10.1351/pac198355081269 Google Scholar