Toward the active conformations of rhodopsin and the β2-adrenergic receptor
Paul R. Gouldson
Deffinity Solutions Ltd., Hampshire, United Kingdom
Search for more papers by this authorNathan J. Kidley
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorGeorgios Psaroudakis
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorHarry D. Brooks
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorConstantino Diaz
Sanofi-Synthelabo Recherche, Centre de Labège, Labège, France
Search for more papers by this authorDavid Shire
Sanofi-Synthelabo Recherche, Centre de Labège, Labège, France
Search for more papers by this authorCorresponding Author
Christopher A. Reynolds
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Department of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK===Search for more papers by this authorPaul R. Gouldson
Deffinity Solutions Ltd., Hampshire, United Kingdom
Search for more papers by this authorNathan J. Kidley
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorGeorgios Psaroudakis
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorHarry D. Brooks
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Search for more papers by this authorConstantino Diaz
Sanofi-Synthelabo Recherche, Centre de Labège, Labège, France
Search for more papers by this authorDavid Shire
Sanofi-Synthelabo Recherche, Centre de Labège, Labège, France
Search for more papers by this authorCorresponding Author
Christopher A. Reynolds
Department of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
Department of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK===Search for more papers by this authorAbstract
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the β2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either “active” or “inactive” restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation. Proteins 2004. © 2004 Wiley-Liss, Inc.
REFERENCES
- 1 Palczewski K, Kumaska T, Hori T, Behnke CA, Motoshima H, Fox BA, Le TI, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739–745.
- 2 Zhao MM, Hwa J, Perez DM. Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. Mol Pharmacol 1996; 50: 1118–1126.
- 3 Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, Hubbell WL. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 1996; 35: 12470–12478.
- 4 Altenbach C, Cai K, Khorana HG, Hubbell WL. Structural features and light-dependent changes in the sequence 306–322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry 1999; 38: 7931–7937.
- 5 Altenbach C, Klein-Seetharaman J, Hwa J, Khorana HB, Hubbell WL. Structural features and light-dependent changes in the sequence 59–75 connecting helices I and II in rhodopsin: a sitee-directed spin-labeling study. Biochemistry 1999; 38: 7945–7949.
- 6 Cai K, Klein-Seetharaman J, Farrens D, Zhang C, Altenback C, Hubbell WL, Khorana HG. Single-cysteine substitution mutants at amino acid positions 306–321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure. Biochemistry 1999; 38: 7925–7930.
- 7 Farahbakhsh ZT, Ridge KD, Khorana HB, Hubbell WL. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry 1995; 34: 8812–8819.
- 8 Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 1996; 274: 768–770.
- 9 Klein-Seetharaman J, Hwa J, Cai K, Altenbach C, Hubbell WL, Khorana HG. Single- cysteine substitution mutants at amino acid positions 55–75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation. Biochemistry 1999; 38: 7938–7944.
- 10 Langen R, Cai K, Altenback C, Khorana HB, Hubbell WL. Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. Biochemistry 1999; 38: 7918–7924.
- 11 Yang K, Farrens DL, Altenbach C, Farahbakhsh ZT, Hubbell WL, Khorana HB. Structure and function in rhodopsin—cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Biochemistry 1996; 35: 14040–14046.
- 12 Yang K, Farrens DL, Hubbell WL, Khorana HG. Structure and function in rhodopsin: single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation. Biochemistry 1996; 35: 12464–12469.
- 13 Elling CE, Schwartz TW. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. EMBO J 1996; 15: 6213–6219.
- 14 Elling CE, Thirstrup K, Nielsen SM, Hjorth SA, Schwartz TW. Engineering of metal-ion sites as distance constraints in structural and functional analysis of 7TM receptors. Fold Des 1997; 2: S76–S80.
- 15 Lu ZL, Hulme EC. A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J Biol Chem 2000; 275: 5682–5686.
- 16 Sheikh SP, Vilardarga JP, Baranski TJ, Lichtarge O, Iiri T, Meng EC, Nissenson RA, Bourne HR. Similar structures and shared switch mechanisms of the beta2-adrenoceptor and the parathyroid hormone receptor: Zn(II) bridges between helices III and VI block activation. J Biol Chem 1999; 274: 17033–17041.
- 17 Elling CE, Thirstrup K, Holst B, Schwartz TW. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor. Proc Natl Acad Sci USA 1999; 96: 12322–12327.
- 18 Rosenkilde MM, Lucibello M, Holst B, Schwartz TW. Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor. FEBS Lett 1998; 439: 35–40.
- 19 Thirstrup K, Elling CE, Hjorth SA, Schwartz TW. Construction of a high affinity zinc switch in the kappa-opioid receptor. J Biol Chem 1996; 271: 7875–7878.
- 20 Fu D, Ballesteros JA, Weinstein H, Chen J, Javitch JA. Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochemistry 1996; 35: 11278–11285.
- 21 Javitch JA, Li X, Kaback J, Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 receptor is exposed in the binding-site crevice. Proc Natl Acad Sci USA 1994; 91: 10355–10359.
- 22 Javitch JA, Fu DY, Chen JY. Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice. Biochemistry 1995; 34: 16433–16439.
- 23 Simpson MM, Ballesteros JA, Chiappa V, Chen JY, Suehiro M, Hartman DS, Godel T, Snyder LA, Salmar TP, Javitch JA. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol Pharmacol 1999; 56: 1116–1126.
- 24 Javitch JA, Fu DY, Liapakis G, Chen JY. Constitutive activation of the beta(2) adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem 1997; 272: 18546–18549.
- 25 Kono M, Yu H, Oprian DD. Disulfide bond exchange in rhodopsin. Biochemistry 1998; 37: 1302–1305.
- 26 Yu H, Kono M, Oprian DD. State-dependent disulfide cross-linking in rhodopsin. Biochemistry 1999; 38: 12028–12032.
- 27 Zeng FY, Hopp A, Soldner A, Wess J. Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. J Biol Chem 1999; 274: 16629–16640.
- 28 Struthers M, Yu H, Kono M, Oprian DD. Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin. Biochemistry 1999; 38: 6597–6603.
- 29 Borhan B, Souto ML, Imai H, Shichida Y, Nakanishi K. Movement of retinal along the visual transduction path. Science 2000; 288: 2209–2212.
- 30 Darrow JO, Hadac EM, Miller LJ, Sugg EE. Structurally similar small molecule photoaffinity CCK-A agonists and antagonists as novel tools for directly probing 7TM receptor–ligand interactions. Bioorg Med Chem Lett 1998; 8: 3127–3132.
- 31 Dong MQ, Dings XQ, Pinon DI, Hadac EM, Oda RP, Landers JP, Miller LJ. Structurally related peptide agonist, partial agonist, and antagonist occupy a similar binding pocket within the cholecystokinin receptor—rapid analysis using fluorescent photoaffinity labeling probes and capillary electrophoresis. J Biol Chem 1999; 274: 4778–4785.
- 32 Ji ZS, Hadac EM, Henne RM, Patel SA, Lybrand TP, Miller LJ. Direct identification of a distinct site of interaction between the carboxyl-terminal residue of cholecystokinin and the type A cholecystokinin receptor using photoaffinity labeling. J Biol Chem 1997; 272: 24393–24401.
- 33 Scheer A, Cotecchia S. Constitutively active G protein-coupled receptors: potential mechanisms of receptor activation. J Recept Signal Transduct Res 1997; 17: 57–73.
- 34 Pogozheva ID, Lomize AL, Mosberg HI. The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J 1997; 72: 57–73.
- 35 Konvicka K, Guarnieri F, Ballesteros JA, Weinstein H. A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an Asn-Pro/Asp-Pro motif. Biophys J 1998; 75: 601–611.
- 36 Zhou W, Flanagan C, Ballesteros JA, Konvicka K, Davidson JS, Weinstein H, Miller RP, Sealfon SC. A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropin-releasing hormone receptor. Mol Pharmacol 1994; 45: 165–170.
- 37 Gouldson PR, Snell CR, Reynolds CA. A new approach to docking in the beta 2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors. J Med Chem 1997; 40: 3871–3886.
- 38 Donnelly D, Findlay JB, Blundell TL. The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels 1994; 2: 61–78.
- 39 Donnelly D, Maudsley S, Gent JP, Moser RN, Hurrell CR, Findlay JB. Conserved polar residues in the transmembrane domain of the human tachykinin NK2 receptor: functional roles and structural implications. Biochem J 1999; 339: 55–61.
- 40 Palczewski K, Kumasake T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G-protein-coupled receptor. Nature 2000; 289: 739–745.
- 41 Horn F, Weare J, Beukers MW, Horsch S, Bairoch A, Chen W, Edvardsen O, Campagne F, Vriend G. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 1998; 26: 275–279.
- 42 Oliveira L, Paiva AM, Vriend G. A common motif in G-protein-coupled seven transmembrane helix receptors. J Comput Aided Mol Des 1993; 7: 649–658.
- 43 Harris M, Kihlen M, Bywater RP. PLIM: a protein–ligand interaction modeller. J Mol Recogn 1993; 6: 111–115.
- 44 Iadanza M, Holtje M, Ronsisvalle G, Holtje HD. Kappa-opioid receptor model in a phospholipid bilayer: molecular dynamics simulation. J Med Chem 2002; 45: 4838–4846.
- 45 Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc Natl Acad Sci USA 2002; 99: 16035–16040.
- 46 Tajkhorshid E, Nollert P, Jensen MO, Miercke LJW, O'Connell J, Stroud RM, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002; 296: 525–530.
- 47 Im W, Roux B. Ions and counterions to a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J Mol Biol 2002; 319: 1177–1197.
- 48 Capener CE, Sansom MSP. Molecular dynamics simulations of a K channel model: sensitivity to changes in ions, waters, and membrane environment. J Phys Chem B 2002; 106: 4543–4551.
- 49 Rohrig UF, Guidoni L, Rothlisberger U. Early steps of the intramolecular signal transduction in rhodopsin explored by molecular dynamics simulations. Biochemistry 2002; 41: 10799–10809.
- 50 Kong YF, Ma JP. Dynamic mechanisms of the membrane water channel aquaporin-1 (AQP1). Proc Natl Acad Sci USA 2001; 98: 14345–14349.
- 51 Dehner A, Planker E, Gemmecker G, Broxterman Q B, Bisson W, Formaggio F, Crisma M, Toniolo C, Kessler H. Solution structure, dimerization, and dynamics of a lipophilic alpha/3(10)-helical, C-alpha-methylated peptide: implications for folding of membrane proteins. J Am Chem Soc 2001; 123: 6678–6686.
- 52 Goetz M, Carlotti C, Bontems F, Dufourc EJ. Evidence for an alpha-helix → pi-bulge helicity modulation for the neu/erB-2 membrane-spanning segment: a H-1 NMR and circular dichroism study. Biochemistry 2001; 40: 6534–6540.
- 53 Johnson ET, Parson WW. Electrostatic interactions in an integral membrane protein. Biochemistry 2002; 41: 6483–6494.
- 54 Lin JH, Baker NA, McCammon JA. Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophys J 2002; 83: 1374–1379.
- 55 Higaki JN, Fletterick RJ, Craik CS. Engineered metalloregulation in enzymes. Trends Biochem Sci 1992; 17: 100–104.
- 56 Gouldson PR, Snell CR, Reynolds CA. A new approach to docking in the β2-adrenergic receptor that exploits the domain structure of G-protein-coupled receptors. J Med Chem 1997; 40: 3871–3886.
- 57 Loewen MC, Klein-Seetharaman J, Getmanova EV, Reeves PI, Schwalbe H, Khorana HG. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin. Proc Natl Acad Sci USA 2001; 98: 4888–4892.
- 58 Vriend G. WHATIF: a molecular modelling and drug design program. J Mol Graph 1990; 8: 52–56.
- 59 Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Algona G, Profeta S, Weiner P. A new force field for molecular mechanical simulations of nucleic acids and proteins. J Am Chem Soc 1984; 106: 765–784.
- 60 Gouldson PR, Reynolds CA. Simulations on dimeric peptides—evidence for domain swapping in G-protein-coupled receptors. Biochem Soc Trans 1997; 25: 1066–1071.
- 61 Gouldson PR, Snell CR, Bywater RP, Higgs C, Reynolds CA. Domain swapping in G-protein coupled receptor dimers. Protein Eng 1998; 11: 1181–1193.
- 62 Ferenczy GG, Reynolds CA, Richards WG. Semiempirical AM1 electrostatic potentials and AM1 electrostatic potential derived charges—a comparison with ab initio values. J Comput Chem 1990; 11: 159–169.
- 63 Reynolds CA, Ferenczy GG, Richards WG. Methods for determining the reliability of semiempirical electrostatic potentials and potential derived charges. J Mol Struct (THEOCHEM) 1992; 88: 249–269.
- 64 Venkatachalam CM, Jiang X, Oldfield T, Walkman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 2003; 21: 289–307.
- 65 Pappin DJ, Findlay JBC. Sequence variability in the retinal-attachment domain of mammalian rhodopsins. Biochem J 1984; 217: 605–613.
- 66 Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 2001; 40: 7761–7772.
- 67 Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 2002; 99: 5982–5987.
- 68 Bywater RP, Thomas D, Vriend G. A sequence and structural study of transmembrane helices. J Comput Aided Mol Des 2001; 15: 533–552.
- 69 Nikiforovish GM, Marshall GR. Three-dimensional model for meta-II rhodopsin, an activated G-protein coupled receptor. Biochemistry 2003; 42: 9110–9120.
- 70 Singh R, Hurst DP, Barnett-Norris J, Lynch DI, Reggio H. Activation of the cannabinoid CB1 receptor may involve a W6.48/F3.36 rotamer toggle switch. J Pept Res 2002; 60: 357–370.
- 71 Dube P, DeCostanzo A, Konopka JB. Interaction between transmembrane domains five and six of the alpha-factor receptor. J Biol Chem 2000; 275: 26492–26499.
- 72 Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA 2001; 98: 5997–6002.
- 73 Yeagle PL, Albert AD. A conformational trigger for activation of a G protein by a G-protein-coupled receptor. Biochemistry 2003; 42: 1365–1368.
- 74 Choi G, Landin J, Galan JF, Birge RR, Albert AD, Yeagle PL. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin. Biochemistry 2002; 41: 7318–7324.
- 75 Angelova K, Fanelli F, Puett D. A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7. J Biol Chem 2002; 277: 32202–32213.
- 76 Greasley PJ, Fanelli F, Scheer A, Abuin L, Nenniger-Tosato M, DeBenedetti PG, Cotecchia S. Mutational and computational analysis of the alpha(1b)-adrenergic receptor: involvement of basic and hydrophobic residues in receptor activation and G protein coupling. J Biol Chem 2001; 276: 46485–46494.
- 77 Baldwin JM, Schertler GF, Unger VM. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol 1997; 272: 144–164.
- 78 Unger VM, Hargrave PA, Baldwin JM, Schertler GF. Arrangement of rhodopsin transmembrane alpha-helices. Nature 1997; 389: 203–206.
- 79 Han M, Lin SW, Minkova M, Smith SO, Sakmar TP. Functional interaction of transmembrane helices 3 and 6 in rhodopsin—replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. J Biol Chem 1996; 271: 32337–32342.
- 80 Han M, Lou JH, Nakanishi K, Sakmar TP, Smith SO. Partial agonist activity of 11-cis-retinal in rhodopsin mutants. J Biol Chem 1997; 272: 23081–23085.
- 81 Bissantz C, Bernard P, Hibert M, Rognan D. Protein-based virtual screening of chemical databases: II. Are homology models of G-protein coupled receptors suitable targets? Proteins 2003; 50: 5–25.
- 82 Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 2002; 98: 343–348.
- 83 McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: the human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 2001; 276: 14092–14099.
- 84 Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Therapeut 20033333; 97: 1–33.
- 85 Yu HB, Oprian DD. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin. Biochemistry 1999; 38: 12033–12040.
- 86 Hovelmann S, Hoffmann SH, Kuhne R, ter Laak T, Reilander H, Beckers T. Impact of aromatic residues within transmembrane helix 6 of the human gonadotropin-releasing hormone receptor upon agonist and antagonist binding. Biochemistry 2002; 41: 1129–1136.
- 87 Cotte N, Balestre MN, Aumelas A, Mahe E, Phalipou S, Morin D, Hibert M, Manning M, Durroux T, Barberis C, Mouillac B. Conserved aromatic residues in the transmembrane region VI of the V-1A vasopressin receptor differentiate agonist vs. antagonist ligand binding. Eur J Biochem 2000; 267: 4253–4263.
- 88 Chen S, Xu M, Lin F, Lee D, Riek P, Graham RM. Phe 310 in transmembrane VI of the alpha1B-adrenergic receptor is a key switch residue involved in activation and catecholamine ring aromatic bonding. J Biol Chem 1999; 274: 16320–16330.
- 89 Escrieut C, Gigoux V, Archer E, Verrier S, Maigret B, Behrendt R, Moroder L, Bignon E, Silvente-Poirot S, Pradayrol L, Fourmy D. The biologically crucial C terminus of cholecystokinin and the non-peptide agonist SR-146,131 share a common binding site in the human CCK1 receptor—evidence for a crucial role of Met-121 in the activation process. J Biol Chem 2002; 277: 7546–7555.
- 90 Blaker M, Ren Y, Seshadri L, McBride EW, Beinborn M, Kopin AS. CCK-B/gastrin receptor transmembrane domain mutations selectively alter synthetic agonist efficacy without affecting the activity of endogenous peptides. Mol Pharmacol 2000; 58: 399–406.
- 91 Vogel WK, Sheehan DM, Schimerlik MI. Site-directed mutagenesis on the m2 muscarinic acetylcholine receptor: the significance of Tyrr403 in the binding of agonists and functional coupling. Mol Pharmacol 1997; 52: 1087–1094.
- 92 Mosser Va, Amana IJ, Schimerlik MI. Kinetic analysis of M-2 muscarinic receptor activation of G(i) in Sf9 insect cell membranes. J Biol Chem 2002; 277: 922–931.
- 93 Wess J, Maggio R, Palmer JR, Vogel Z. Role of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation—a study with M3-muscarinic-receptor point mutants. J Biol Chem 1992; 267: 19313–19319.
- 94 Karnik SS, Husain A, Graham RM. Molecular determinants of peptide and non-peptide binding to the AT(1) receptor. Clin Exp Pharmacol Physiol 1996; 23: S58–S66.
- 95 Nakayama TA, Khorana HG. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J Biol Chem 1991; 266: 4269–4275.
- 96 Meng F, Wei Q, Hoversten MT, Taylor LP, Akil H. Switching agonist/antagonist properties of opiate alkaloids at the delta opioid receptor using mutations based on the structure of the orphanin FQ receptor. J Biol Chem 2000; 275: 21939–21945.
- 97 Lin YM, Jian XY, Lin ZL, Krooggg GS, Mantey S, Jensen RT, Battey J, Northrup J. Two amino acids in the sixth transmembrane segment of the mouse gastrin-releasing peptide receptor are important for receptor activation. J Pharmacol Exp Ther 2000; 294: 1053–1062.
- 98 Yang YK, Dickinson C, Haskell Luevano C, Gantz I. Molecular basis for the interaction of [Nle(4),D-Phe(7)]melanocyte stimulating hormone with the human melanocortin-1 receptor (melanocyte alpha-MSH receptor). J Biol Chem 1997; 272: 23000–23010.
- 99 Chen CH, Chen WY, Liu HL, Liu TT, Tsou AP, Lin CY, Chao T, Qu Y, Hsiao KJ. Identification of mutations in the arginine vasopressin receptor 2 gene causing nephrogenic diabetes insipidus in Chinese patients. J Hum Genet 2002; 47: 66–73.
- 100 Berglund MM, Fredriksson R, Salaneck E, Larhammar D. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding. FEBS Lett 2002; 518: 5–9.
- 101 Olah ME, Ren HZ, Ostrowski J, Jacobson KA, Stiles GL. Cloning, expression, and characterization of the unique bovine-A1 adenosine receptor—studies on the ligant-binding site by site-directed mutagenesis. J Biol Chem 1992; 267: 10764–10770.
- 102 Mollereau C, Moisand C, Butour JL, Parmentier M, Meunier JC. Replacement of Gln(280) by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Lett 1996; 395: 17–21.
- 103 Huang XP, Nagy PI, Williams FE, Peseckis SM, Messer WS. Roles of threonine 192 and asparagine 382 in agonist and antagonist interactions with M-1 muscarinic receptors. Br J Pharmacol 1999; 126: 735–745.
- 104 Wieland K, Ter Laak AM, Smit MJ, Kuhne R, Timmerman H, Leurs R. Mutational analysis of the antagonist-binding site of the histamine H-1 receptor. J Biol Chem 1999; 274: 29994–30000.
- 105 Fernandez LM, Puett D. Identification of amino acid residues in transmembrane helices VI and VII of the lutropin choriogonadotropin receptor involved in signaling. Biochemistry 1996; 35: 3986–3993.
- 106 Shin N, Coates E, Murgolo NJ, Morse KL, Bayne M, Strader CD, Monsma FJ. Molecular modeling and site-specific mutagenesis of the histamine-binding site of the histamine H-4 receptor. Mol Pharmacol 2002; 62: 38–47.
- 107 Spivak CE, Beglan CL, Seidleck BK, Hirshbein LD, Blaschak CJ, Uhl GR, Surratt CK. Naloxone activation of mu-opioid receptors mutated at a histidine residue lining the opioid binding cavity. Mol Pharmacol 1997; 52: 983–992.
- 108 Gao ZG, Chen A, Barak D, Kim SK, Muller CE, Jacobson KA. Identification by site-directed mutagenesis of residues involved in ligand recognition and activation of the human A(3) adenosine receptor. J Biol Chem 2002; 277: 19056–19063.
- 109 Feighner SD, Howard AD, Prendergast K, Palyha OC, Hreniuk DL, Nargund R, Underwood D, Tata JR, Dean DC, Tan CP, McKee KK, Woods JW, Patchett AA, Smith RG, Van der Ploeg LHT. Structural requirements for the activation of the human growth hormone secretagogue receptor by peptide and nonpeptide secretagogues. Mol Endocrinol 1998; 12: 137–145.
- 110 Nardone J, Hogan PG. Delineation of a region in the B2 bradykinin receptor that is essential for high-affinity agonist binding. Proc Natl Acad Sci USA 1994; 91: 4417–4421.
- 111 Ward SDC, Curtis CAM, Hulme EC. Alanine-scanning mutagenesis of transmembrane domain 6 of the M-1 muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function. Mol Pharmacol 1999; 56: 1031–1041.
- 112 Manivet P, Schneider B, Smith JC, Choi DS, Maroteaux L, Kellermann O, Launay JM. The serotonin binding site of human and murine 5-HT2B-receptors—molecular modeling and site-directed mutagenesis. J Biol Chem 2002; 277: 17170–17178.
- 113 Berthold M, Kahl U, Jureus A, Kask K, Nordvall G, Langel U, Bartfai T. Mutagenesis and ligand modification studies on galanin binding to its GTP-binding protein-coupled receptor GalR1. Eur J Biochem 1997; 249: 601–606.
- 114 Jiang QL, Guo DP, Lee BX, VanRhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA. A mutational analysis of residues essential for ligand recognition at the human P2Y(1) receptor. Mol Pharmacol 1997; 52: 499–507.
- 115 Moro S, Guo DP, Camaioni E, Boyer JL, Harden TK, Jacobson KA. Human P2Y(1) receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem 1998; 41: 1456–1466.
- 116 Labbe-Jullie C, Barroso S, Nicolas-Eteve D, Reversat JL, Botto JM, Mazella J, Bernassau JM, Kitabgi P. Mutagenesis and modeling of the neurotensin receptor NTR1: identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist. J Biol Chem 1998; 273: 16351–16357.
- 117 Greenfeder S, Cheewatrakoolpong B, Billah M, Egan RW, Keene E, Murgolo NJ, Anthes JC. The neurokinin-1 and neurokinin-2 receptor binding sites of MDL103,392 differ. Bioorg Med Chem 1999; 7: 2867–2876.
- 118 Giolitti A, Cucchi P, Renzetti AR, Rotondaro L, Zappitelli S, Maggi CA. Molecular determinants of peptide and nonpeptide NK-2 receptor antagonists binding sites of the human tachykinin NK-2 receptor by site-directed mutagenesis. Neuropharmacology 2000; 39: 1422–1429.
- 119 Javitch JA, Ballesteros JA, Weinstein H, Chen J. A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice. Biochemistry 1998; 37: 998–1006.
- 120 Akeson M, Sainz E, Mantey SA, Jensen RT, Battey JF. Identification of four amino acids in the gastrin-releasing peptide receptor that are required for high affinity agonist binding. J Biol Chem 1997; 272: 17405–17409.
- 121 Gardella TJ, Luck MD, Fan MH, Lee CW. Transmembrane residues of the parathyroid hormone (PTH)/PTH-related peptide receptor that specifically affect binding and signaling by agonist ligands. J Biol Chem 1996; 271: 12820–12825.
- 122 Jensen CJ, Gerard NP, Schwartz TW, Gether U. The species selectivity of chemically distinct tachykinin nonpeptide antagonists is dependent on common divergent residues of the rat and human neurokinin-1 receptors. Mol Pharmacol 1994; 45: 294–299.
- 123 Sainz E, Akeson M, Mantey SA, Jensen RT, Battey JF. Four amino acid residues are critical for high affinity binding of neuromedin B to the neuromedin B receptor. J Biol Chem 1998; 273: 15927–15932.
- 124 Parker EM, Grisel DA, Iben LG, Shapiro RA. A single amino-acid difference accounts for the pharmacological distinctions between the rat and human 5-hydroxytryptamine 1B receptors. J Neurochem 1993; 60: 380–383.
- 125 Glennon RA, Dukat M, Westkaemper RB, Ismaiel AM, Izzarelli DB, Parker EM. The binding of propranolol at 5-hydroxytryptamine(1D beta) T355N mutant receptors may involve formation of two hydrogen bonds to asparagine. Mol Pharmacol 1995; 49: 198–206.
- 126 Stithama J, Stojanovic A, Merenick BL, O'Hara KA, Hwa J. The unique ligand-binding pocket for the human prostacyclin receptor—site-directed mutagenesis and molecular modeling. J Biol Chem 2003; 278: 4250–4257.
- 127 Dragic T, Trkola A, Thompson DAD, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying WW, Smith SO, Sakmar TP, Moore JP. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci USA 2000; 97: 5639–5644.
- 128 Waugh DJJ, Gaivin RJ, Zuscik MJ, Gonzalez-Cabrera P, Ross SA, Yun J, Perez DM. Phe-308 and Phe-312 in transmembrane domain 7 are major sites of alpha(1)-adrenergic receptor antagonist binding—imidazoline agonists bind like antagonists. J Biol Chem 2001; 276: 25366–25371.
- 129 Suryanarayana S, Kobilka BK. Amino acid substitutions at position 312 in the seventh hydrophobic segment of the beta 2-adrenergic receptor modify ligand-binding specificity. Mol Pharmacol 1993; 44: 111–114.
- 130 Gerber BO, Meng EC, Dotsch V, Baranski TJ, Bourne HR. An activation switch in the ligand binding pocket of the C5a receptor. J Biol Chem 2001; 276: 3394–3400.
- 131 Weitz CJ, Nathans J. Rhodopsin activation—effects on the metarhodopsin-I metarhodopsin-II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane segments. Biochemistry 1993; 32: 14176–14182.
- 132 Liang XY, Parkinson JA, Weishaupl M, Gould RO, Paisey SJ, Park HS, Hunter TM, Blindauer CA, Parsons S, Sadler PJ. Structure and dynamics of metallomacrocycles: recognition of zinc xylyl-bicyclam by an HIV coreceptor. J Am Chem Soc 2002; 124: 9105–9112.
- 133 Rim J, Oprian DD. Constitutive activation of opsin—interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 1995; 34: 11938–11945.
- 134 Lundstrom K, Turpin MP, Large C, Robertson G, Thomas P, Lewell XQ. Mapping of dopamine D-3 receptor binding site by pharmacological characterization of mutants expressed in CHO cells with the Semliki Forest virus system. J Recept Signal Transduct Res 1998; 18: 133–150.
- 135 Gouldson P, Legoux P, Carillon C, Delpech B, Le Fur G, Ferrara P, Shire D. Contrasting roles of Leu(356) in the human CCK(1) receptor for antagonist SR 27897 and agonist SR 146131 binding. Eur J Pharmacol 1999; 383: 339–346.
- 136 Donohue PJ, Sainz E, Akeson M, Kroog GS, Mantey SA, Battey JP, Jensen RT, Northrup JK. An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Biochemistry 1999; 38: 9366–9372.
- 137 Mirzadegan T, Diehl F, Ebi B, Bhakta S, Polsky I, McCarley D, Mulkins M, Weatherhead GS, Lapierre JM, Dankwardt J, Morgans D, Wilhelm R, Jarnagin K. Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists—binding to a common chemokine receptor motif within the helical bundle. J Biol Chem 2000; 275: 25562–25571.
- 138 Lu ZL, Saldanha JW, Hulme EC. Transmembrane domains 4 and 7 of the M-1 muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch. J Biol Chem 2001; 276: 34098–34104.
- 139 Kopin AS, McBride EW, Quinn SM, Kolakowski LF, Beinborn M. The role of the cholecystokinin-B gastrin receptor transmembrane domains in determining affinity for subtype-selective ligands. J Biol Chem 1995; 270: 5019–5023.
- 140 Owens CE, Akil H. Determinants of ligand selectivity at the kappa-receptor based on the structure of the orphanin FQ receptor. J Pharmacol Exp Ther 2002; 300: 992–999.
- 141 Meng, Taylor LP, Hoversten MT, Ueda Y, Ardati A, Reinscheid RK, Monsma FJ, Watson SJ, Civelli O, Akil H. Moving from the orphanin FQ to an opioid receptor using four point mutations. J Biol Chem 1996; 271: 32016–32020.
- 142 Meng F, Ueda Y, Hoversten MT, Taylor LP, Reinscheid RK, Monsma FJ, Watson SJ, Civelli O, Akil H. Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site-directed mutagenesis. Mol Pharmacol 1998; 53: 772–777.
- 143 Casarosa P, Menge WM, Minisini R, Otto C, van Heteren J, Jongejan A, Timmerman H, Moepps B, Kirchoff F, Mertens T, Smit MJ, Leurs R. Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 2003; 278: 5172–5178.
- 144 Gouldson PR, Legoux P, Carillon C, Delpech B, Le Fur G, Ferrara P, Shire D. Contrasting roles of Leu356 in the human CCK1 receptor for antagonist SR 27897 and agonist SR 146131 binding. Eur J Pharmacol 1999; 383: 341–348.
- 145 Kedzie KM, Donello JE, Krauss HA, Regan JW, Gil DW. A single amino-acid substitution in the EP2 prostaglandin receptor confers responsiveness to prostacyclin analogs. Mol Pharmacol 1998; 54: 584–590.
- 146 Dalpiaz A. Townsend-Nicholson A, Beukers MW, Schofield PR, Ijzerman AP. Thermodynamics of full agonist, partial agonist, and antagonist binding to wild type and mutant adenosine A(1) receptors. Biochem Pharmacol 1998; 56: 1437–1445.
- 147 Kim JH, Wess J, VanRhee AM, Schoneberg T, Jacobson KA. Site-directed mutagenesis identifies residues involved in ligand recognition in the human A(2A) adenosine receptor. J Biol Chem 1995; 270: 13987–13997.
- 148 Gether U, Kobilka BK. G protein-coupled receptors: II. Mechanism of agonist activation. J Biol Chem 1998; 273: 17979–17982.
- 149 De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980; 255: 7108–7117.
- 150 Krebs A, Villa C, Edwards PC, Schertler GFX. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J Mol Biol 1998; 282: 991–1003.
- 151 Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site: evidence for a region which constrains receptor activation. J Biol Chem 1992; 267: 1430–1433.
- 152 Porter JE, Hwa J, Perez DM. Activation of the alpha1b-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J Biol Chem 1996; 271: 28318–28323.
- 153 Kim JM, Altenbach C, Thurmond RL, Khorana HG, Hubbell WL. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc Natl Acad Sci USA 1997; 94: 14273–14278.
- 154 Hulme EC, Lu ZL, Ward SD, Allman K, Curtis CA. The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm. Eur J Pharmacol 1999; 375: 247–260.
- 155 Perez DM, Hwa J, Gaivin R, Mathur M, Borwn F, Graham RM. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol 1996; 49: 112–122.
- 156 Elling CE, Nielsen SM, Schwartz TW. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature 1995; 374: 74–77.
- 157 Beck M, Sakmar TP, Siebert F. Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin. Biochemistry 1998; 37: 7630–7639.
- 158 Gouldson PR, Winn PJ, Reynolds CA. A molecular dynamics approach to receptor mapping—application to the 5HT3 and β2-adrenergic receptors. J Med Chem 1995; 38: 4080–4086.