Influence of the Hydrophobic–Hydrophilic Nature of Biomedical Polymers and Nanocomposites on In Vitro Biological Development
Elena Torres
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, 03801 Alcoy, Spain
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n – 46022 Valencia, Spain
Search for more papers by this authorAnna Vallés-Lluch
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n – 46022 Valencia, Spain
Search for more papers by this authorCorresponding Author
Vicent Fombuena
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, 03801 Alcoy, Spain
E-mail: [email protected]Search for more papers by this authorBrett Napiwocki
Wisconsin Institute for Discovery, University of Wisconsin-Madison, 33N Orchard St, WI, 53715 USA
Search for more papers by this authorTurng Lih-Sheng
Wisconsin Institute for Discovery, University of Wisconsin-Madison, 33N Orchard St, WI, 53715 USA
Search for more papers by this authorElena Torres
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, 03801 Alcoy, Spain
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n – 46022 Valencia, Spain
Search for more papers by this authorAnna Vallés-Lluch
Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n – 46022 Valencia, Spain
Search for more papers by this authorCorresponding Author
Vicent Fombuena
Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, 03801 Alcoy, Spain
E-mail: [email protected]Search for more papers by this authorBrett Napiwocki
Wisconsin Institute for Discovery, University of Wisconsin-Madison, 33N Orchard St, WI, 53715 USA
Search for more papers by this authorTurng Lih-Sheng
Wisconsin Institute for Discovery, University of Wisconsin-Madison, 33N Orchard St, WI, 53715 USA
Search for more papers by this authorAbstract
In this work, cell viability, proliferation, and morphology are studied on two pairs of polymers used in the biomedical field that have similar chemical natures but differ in hydrophobicity. On the one hand, hydrophobic polyester poly(ε-caprolactone), is modified by blending with poly(lactic acid). On the other hand, the hydrophilic acrylate poly(2-hydroxyethyl methacrylate) (PHEMA), is copolymerized with ethyl methacrylate (EMA) at a ratio of 50/50 wt.% P(HEMA-co-EMA). These two polymers are used as neat resins or combined with hydroxyapatite (HA) nanoparticles and halloysite nanotubes (HNTs) to enhance cell attachment and mechanical properties. Cell proliferation is greater on moderately hydrophobic materials at the initial stage, with cells showing a round shape and aggregating in clusters. However, over longer culture periods, cell proliferation is more advanced on more hydrophilic surfaces, where cells spread out with a flatter shape. Improvement of cell viability is observed with the addition of HA and HNTs.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1Y. M. Wang, M. A. Rodriguez-Perez, R. L. Reis, J. F. Mano, Macromol. Mater. Eng. 2005, 290, 792.
- 2S. Yuan, G. Xiong, X. Wang, S. Zhang, C. Choong, J. Mater. Chem. 2012, 22, 13039.
- 3Z. Ma, Z. Mao, C. Gao, Colloids Surf., B 2007, 60, 137.
- 4R. Filmon, M. F. Basle, H. Atmani, D. Chappard, Bone 2002, 30, 152.
- 5C. B. Lombello, S. M. Malmonge, M. L. F. Wade, Cytobios 2000, 101, 115.
- 6L. Hermitte, F. Thomas, R. Bougaran, C. Martelet, J. Colloid Interface Sci. 2004, 272, 82.
- 7D. Porrelli, A. Travan, G. Turco, E. Marsich, M. Borgogna, S. Paoletti, I. Donati, Macromol. Mater. Eng. 2015, 300, 989.
- 8P. Roach, D. Eglin, K. Rohde, C. C. Perry, J. Mater. Sci.: Mater. Med. 2007, 18, 1263.
- 9P. V. Azzopardi, J. O'Young, G. Lajoie, M. Karttunen, H. A. Goldberg, G. K. Hunter, PloS One 2010, 19, 5.
- 10B. Feng, J. Y. Chen, X. D. Zhang, Biomaterials 2002, 23, 2499.
- 11J.-W. Shen, T. Wu, Q. Wang, H.-H. Pan, Biomaterials 2008, 29, 513.
- 12H. Zhou, T. Wu, X. Dong, Q. Wang, J. Shen, Biochem. Biophys. Res. Commun. 2007, 361, 91.
- 13E. Epstein, Proc. Natl. Acad. Sci. USA 1994, 91, 11.
- 14W. Y. Zhou, B. Guo, M. Liu, R. Liao, A. B. M. Rabie, D. Jia, J. Biomed. Mater. Res., Part A 2010, 93A, 1574.
- 15W. Xue, A. Bandyopadhyay, S. Bose, Acta Biomater. 2009, 5, 1686.
- 16V. Vergaro, E. Abdullayev, Y. M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Biomacromolecules 2010, 11, 820.
- 17M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente, Chem. Mater. 2001, 13, 308.
- 18S. J. Hollister, Nat. Mater. 2005, 4, 518.
- 19H. W. Kim, J. Biomed. Mater. Res., Part A 2007, 83A, 169.
- 20I. T. Jackson, R. Yavuzer, Br. J. Plast. Surg. 2000, 53, 24.
- 21L. Miller, A. B. Guerra, R. S. Bidros, C. Trahan, R. Baratta, S. E. Metzinger, Ann. Plast. Surg. 2005, 55, 87.
- 22Y. M. Lvov, D. G. Shchukin, H. Mohwald, R. R. Price, ACS Nano 2008, 2, 814.
- 23W.-Y. Choi, H.-E. Kim, Y.-H. Koh, J. Porous Mater. 2013, 20, 701.
- 24M. G. Yeo, G. H. Kim, Chem. Mater. 2012, 24, 903.
- 25A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, P. A. Netti, Macromol. Rapid Commun. 2011, 32, 1150.
- 26B. Q. Chen, K. Sun, Polym. Test. 2005, 24, 978.
- 27K.-S. Lee, Y.-W. Chang, J. Appl. Polym. Sci. 2013, 128, 2807.
- 28J. J. Xue, Y. Z. Niu, M. Gong, R. Shi, D. F. Chen, L. Q. Zhang, Y. Lvov, ACS Nano 2015, 9, 1600.
- 29V. Khunova, I. Kelnar, J. Kristof, J. Dybal, J. Kratochvil, L. Kapralkova, J. Therm. Anal. Calorim. 2015, 120, 1283.
- 30E. Torres, V. Fombuena, A. Vallés-Lluch, T. Ellingham, Mater. Sci. Eng. C 2017, 75, 418.
- 31M. Liu, B. Guo, M. Du, Y. Lei, D. Jia, J. Polym. Res. 2008, 15, 205.
- 32K. Prashantha, M. F. Lacrampe, P. Krawczak, Express Polym. Lett. 2011, 5, 295.
- 33J. Russias, E. Saiz, R. K. Nalla, K. Gryn, R. O. Ritchie, A. P. Tomsia, Mater. Sci. Eng., C 2006, 26, 1289.
- 34M. Kikuchi, Y. Suetsugu, J. Tanaka, M. Akao, J. Mater. Sci.: Mater. Med. 1997, 8, 361.
- 35T. Kasuga, Y. Ota, M. Nogami, Y. Abe, Biomaterials 2001, 22, 19.
- 36R. L. Dunn, R. A. Casper, EP146398-A; JP60153868-A; US4655777-A; CA1261991-A, Southern Res Inst, invs.
- 37R. T. De Silva, M. Soheilmoghaddam, K. L. Goh, M. U. Wahit, S. A. H. Bee, S.-P. Chai, P. Pasbakhsh, Polym. Compos. 2016, 37, 861.
- 38R. T. De Silva, P. Pasbakhsh, K. L. Goh, S. P. Chai, J. Chen, J. Compos. Mater. 2014, 48, 3705.
- 39K. Prashantha, B. Lecouvet, M. Sclavons, M. F. Lacrampe, P. Krawczak, J. Appl. Polym. Sci. 2013, 128, 1895.
- 40G. Gorrasi, R. Pantani, M. Murariu, P. Dubois, Macromol. Mater. Eng. 2014, 299, 104.
- 41G. Stoclet, M. Sclavons, B. Lecouvet, J. Devaux, P. Van Velthem, A. Boborodea, S. Bourbigot, N. Sallem-Idrissi, RSC Adv. 2014, 4, 57553.
- 42P. K. Roy, M. Hakkarainen, A.-C. Albertsson, Polym. Degrad. Stab. 2012, 97, 1254.
- 43N. A. Isitman, M. Dogan, E. Bayramli, C. Kaynak, Polym. Degrad. Stab. 2012, 97, 1285.
- 44J. Matusik, E. Stodolak, K. Bahranowski, Appl. Clay Sci. 2011, 51, 102.
- 45M. Murariu, A.-L. Dechief, Y. Paint, S. Peeterbroeck, L. Bonnaud, P. Dubois, J. Polym. Environ. 2012, 20, 932.
- 46M. Liu, Y. Zhang, C. Zhou, Appl. Clay Sci. 2013, 75–76, 52.
- 47M. Kikuchi, S.-B. Cho, J. Tanaka, Y. Koyama, T. Kobayashy, K. Takakuda, Akao., J. Jpn. Soc. Powder Powder Metall. 1998, 36–40, 45.
- 48S. Zhou, X. Zheng, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, M. Yin, Chem. Mater. 2007, 19, 247.
- 49E. Oral, N. A. Peppas, J. Biomed. Mater. Res., Part A 2006, 78A, 205.
- 50Y. Tanaka, K. Fukao, Y. Miyamoto, Eur. Phys. J. E 2000, 3, 395.
- 51J. Huang, D. Zhao, S. J. Dangaria, X. Luan, T. G. H. Diekwisch, G. Jiang, E. Saiz, G. Liu, A. P. Tomsia, Polymer 2013, 54, 909.
- 52J. Song, E. Saiz, C. R. Bertozzi, J. Eur. Ceram. Soc. 2003, 23, 2905.
- 53J. Song, J. Xu, T. Filion, E. Saiz, A. P. Tomsia, J. B. Lian, G. S. Stein, D. C. Ayers, C. R. Bertozzi, J. Biomed. Mater. Res., Part A 2009, 89A, 1098.
- 54T. M. Filion, X. Li, A. Mason-Savas, J. M. Kreider, S. A. Goldstein, D. C. Ayers, J. Song, Tissue Eng., Part A 2011, 17, 503.
- 55K. M. Rao, S. Nagappan, D. J. Seo, C.-S. Ha, Appl. Clay Sci. 2014, 97–98, 33.
- 56M. Fernandez, M. Muniesa, J. Gonzalez, Strojniski Vestnik-J. Mech. Eng. 2013, 59, 183.
- 57L. Xue, H. P. Greisler, J. Vasc. Surg. 2003, 37, 472.
- 58Y. Tamada, Y. Ikada, J. Colloid Interface Sci. 1993, 155, 334.
- 59T. A. Horbett, Colloids Surf., B 1994, 2, 225.
- 60F. Grinnell, M. Feld, D. Minter, Cell 1980, 19, 517.
- 61Y. Z. Yang, R. Cavin, J. L. Ong, J. Biomed. Mater. Res., Part A 2003, 67A, 344.
- 62W. Dessau, J. Sasse, R. Timpl, F. Jilek, K. Vondermark, J. Cell Biol. 1978, 79, 342.
- 63S. Ayad, R. P. Boot-Handford, M. J. Humphries, K. E. Kadler, C. A. Shuttleworth, The Extracellular Matrix Facts Book, Academic Press, San Diego, CA 1994.
- 64E. Ruoslahti, J. C. Reed, Cell 1994, 77, 477.
- 65R. O. Hynes, Cell 1992, 69, 11.
- 66W. Norde, Adv. Colloid Interface Sci. 1986, 25, 267.
- 67D. T. H. Wassell, R. C. Hall, G. Embery, Biomaterials 1995, 16, 697.
- 68C. Liao, Y. Xie, J. Zhou, RSC Adv. 2014, 4, 15759.
- 69Y. L. Liu, P. Layrolle, J. de Bruijn, C. van Blitterswijk, K. de Groot, J. Biomed. Mater. Res. 2001, 57, 327.
10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 70P. Q. Ying, Y. Yu, G. Jin, Z. L. Tao, Colloids Surf., B 2003, 32, 1.
- 71C. R. Nuttelman, D. J. Mortisen, S. M. Henry, K. S. Anseth, J. Biomed. Mater. Res. 2001, 57, 217.
- 72D. J. Iuliano, S. S. Saavedra, G. A. Truskey, J. Biomed. Mater. Res. 1993, 27, 1103.
- 73F. Grinnell, M. K. Feld, J. Biol. Chem. 1982, 257, 4888.
- 74J. H. Wei, T. Igarashi, N. Okumori, T. Maetani, B. L. Liu, M. Yoshinari, Biomed. Mater. 2009, 4, 405.
- 75M. Zelzer, D. Albutt, M. R. Alexander, N. A. Russell, Plasma Processes Polym. 2012, 9, 149.
- 76J. Fripiat, J. Cases, M. Francois, M. Letellier, J. Colloid Interface Sci. 1982, 89, 378.
- 77C. F. Wertz, M. M. Santore, Langmuir 2001, 17, 3006.