Multiband modulation spectroscopy for the determination of sex and species of mosquitoes in flight
Corresponding Author
Alem Gebru
FaunaPhotonics APS, Copenhagen, Denmark
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Correspondence
Alem Gebru, FaunaPhotonics APS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
Email: [email protected]
Mikkel Brydegaard, Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden.
Email: [email protected]
Search for more papers by this authorSamuel Jansson
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Search for more papers by this authorRickard Ignell
Chemical Ecology Unit, Department of Plant Protection Biology, SLU, Alnarp, Sweden
Search for more papers by this authorCarsten Kirkeby
FaunaPhotonics APS, Copenhagen, Denmark
National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
Search for more papers by this authorCorresponding Author
Mikkel Brydegaard
FaunaPhotonics APS, Copenhagen, Denmark
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Norsk Elektro Optikk AS, Skedsmokorset, Norway
Correspondence
Alem Gebru, FaunaPhotonics APS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
Email: [email protected]
Mikkel Brydegaard, Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Alem Gebru
FaunaPhotonics APS, Copenhagen, Denmark
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Correspondence
Alem Gebru, FaunaPhotonics APS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
Email: [email protected]
Mikkel Brydegaard, Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden.
Email: [email protected]
Search for more papers by this authorSamuel Jansson
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Search for more papers by this authorRickard Ignell
Chemical Ecology Unit, Department of Plant Protection Biology, SLU, Alnarp, Sweden
Search for more papers by this authorCarsten Kirkeby
FaunaPhotonics APS, Copenhagen, Denmark
National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
Search for more papers by this authorCorresponding Author
Mikkel Brydegaard
FaunaPhotonics APS, Copenhagen, Denmark
Department of Physics, Lund Laser Centre, Lund University, Lund, Sweden
Department of Biology, Centre for Animal Movement, Lund University, Lund, Sweden
Norsk Elektro Optikk AS, Skedsmokorset, Norway
Correspondence
Alem Gebru, FaunaPhotonics APS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
Email: [email protected]
Mikkel Brydegaard, Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden.
Email: [email protected]
Search for more papers by this authorAbstract
We present a dual-wavelength polarimetric measurement method to distinguish species and sexes of disease transmitting mosquitoes in flight. By measuring co- and de-polarized backscattered light at 808 and 1550 nm, the degree of linear polarization, wingbeat frequency, reflectance, spectral ratio and glossiness of mosquitoes can be retrieved. Body and wing contributions to these signals can be separated. Whereas the optical cross section is sensitive to the aspect of observation, thus the heading direction of the insect in flight, we demonstrate that polarimetric- and spectral-band ratios are largely invariant to the aspect of observation. We show that wing glossiness, as well as wing- and body-spectral ratios are particularly efficient in distinguishing Anopheles coluzzii and Anopheles arabiensis, 2 closely related species of malaria vectors. Spectral and polarimetric ratios relate to microstructural and melanization features of the wing and body of these species. We conclude that multiband modulation spectroscopy is a useful expansion of the parameter space that can be used to improve the specificity of entomological lidars.
Supporting Information
Filename | Description |
---|---|
jbio201800014-sup-1001-author-biographies.docxapplication/docx, 1 MB | Author Biographies |
jbio201800014-sup-0001-FigS1.pdfTIFF image, 740.6 KB | Figure S1 Diffuse and specular scattering overlaid from several species. The overlap of Culex quiquefasciatus with the Anophelines is often bigger than the overlap between the two Anophelines species. |
jbio201800014-sup-0002-FigS2.pdfTIFF image, 129.2 KB | Figure S2 A simple Bayesian classifier was applied to the data from Table 2. The success ratio of classification is high and similar to previous studies, even without taking into account information in harmonic overtones. In this study, the female Aedes Aegypti were the most challenging and often mistaken with males from other species. The classification performance in field with additional species is challenging to predict. |
jbio201800014-sup-0003-FigS3.pdfTIFF image, 61.2 KB | Figure S3 The covariance of the optical parameters in Table 2. The covariance is compensated for group sizes and show minor redundancy in the reported parameters. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 World Health Organization, Vector Control, World Health Organization: Geneva, Switzerland, 2017 http://www.who.int/vector-control/en/.
- 2D. J. Gubler, Emerg. Infect. Dis. 1998, 4, 442.
- 3C. J. L. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman, D. Haring, N. Fullman, M. Naghavi, R. Lozano, A. D. Lopez, Lancet 2012, 379, 413.
- 4 World Health Organization, World Malaria Report 2016, World Health Organization: Geneva, Switzerland, 2016.
10.30875/4348b814-en Google Scholar
- 5V. Corbel, M. Akogbeto, G. B. Damien, A. Djenontin, F. Chandre, C. Rogier, N. Moiroux, J. Chabi, G. G. Padonou, M.-C. Henry, Lancet Infect. Dis. 2012, 12, 617.
- 6M. Yohannes, E. Boelee, Med. Vet. Entomol. 2012, 26, 103.
- 7M. L. Gatton, N. Chitnis, T. Churcher, M. J. Donnelly, A. C. Ghani, H. C. J. Godfray, F. Gould, I. Hastings, J. Marshall, H. Ranson, Evolution 2013, 67, 1218.
- 8A. Dao, A. S. Yaro, M. Diallo, S. Timbine, D. L. Huestis, Y. Kassogue, A. I. Traore, Z. L. Sanogo, D. Samake, T. Lehmann, Nature 2014, 516, 387.
- 9H. M. Ferguson, A. Dornhaus, A. Beeche, C. Borgemeister, M. Gottlieb, M. S. Mulla, J. E. Gimnig, D. Fish, G. F. Killeen, PLoS Med. 2010, 7, e1000303.
- 10G. Benelli, Asian Pac. J. Trop. Biomed. 2016, 6, 468.
- 11C. Kirkeby, M. Wellenreuther, M. Brydegaard, Sci. Rep. 2016, 6, 29083.
- 12E. Malmqvist, S. Jansson, S. Zhu, W. Li, K. Svanberg, S. Svanberg, J. Rydell, Z. Song, J. Bood, M. Brydegaard, and S. Åkesson, Royal Society Open Science, 2018, in press.
- 13Z. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E. Svensson, S. Svanberg, Appl. Optics 2010, 49, 1.
- 14E. W. Kaindoa, H. S. Ngowo, A. Limwagu, G. Mkandawile, J. Kihonda, J. P. Masalu, H. Bwanary, A. Diabate, F. O. Okumu, Wellcome Open Res. 2017, 2, 88.
- 15S. P. Sawadogo, A. Niang, E. Bilgo, A. Millogo, H. Maïga, R. K. Dabire, F. Tripet, A. Diabaté, PLoS One 2017, 12, e0173273.
- 16J. B. Silver, Mosquito Ecology: Field Sampling Methods, Springer: Berlin, Germany, 2007.
- 17Y.-N. Liu, Y.-J. Liu, Y.-C. Chen, H.-Y. Ma, H.-Y. Lee, Sci. Rep. 2017, 7, 40074.
- 18Y. Chen, A. Why, G. Batista, A. Mafra-Neto, E. Keogh, J. Insect Behav. 2014, 27, 657.
- 19I. Potamitis, I. Rigakis, K. Fysarakis, PLoS One 2015, 10, e0140474.
- 20L. Mboera, B. Knols, M. Braks, W. Takken, Med. Vet. Entomol. 2000, 14, 257.
- 21C. Costantini, G. Gibson, N. F. Sagnon, A. D. Torre, J. Brady, M. Coluzzi, Med. Vet. Entomol. 1996, 10, 220.
- 22D. V. Maliti, N. J. Govella, G. F. Killeen, N. Mirzai, P. C. D. Johnson, K. Kreppel, H. M. Ferguson, Malar. J. 2015, 14, 502.
- 23N. J. Govella, P. P. Chaki, Y. Geissbuhler, K. Kannady, F. Okumu, J. D. Charlwood, R. A. Anderson, G. F. Killeen, Malar. J. 2009, 8, 157.
- 24O. Kenea, M. Balkew, H. Tekie, T. Gebre-Michael, W. Deressa, E. Loha, B. Lindtjørn, H. J. Overgaard, Malar. J. 2017, 16, 30.
- 25J. R. Hagler, C. G. Jackson, Annu. Rev. Entomol. 2001, 46, 511.
- 26M. Brydegaard, A. Merdasa, A. Gebru, H. Jayaweera, S. Svanberg, Appl. Spectrosc. 2016, 70, 372.
- 27K. A. Hartfield, K. I. Landau, W. J. D. v. Leeuwen, Remote Sens. (Basel) 2011, 3, 2364.
- 28T. L. Millette, B. A. Argow, E. Marcano, C. Hayward, C. S. Hopkinson, V. Valentine, J. Coastal Res. 2010, 265, 809.
- 29M. Brydegaard, E. Malmqvist, S. Jansson, J. Larsson, S. Török, G. Zhao, Lidar Remote Sensing for Environmental Monitoring, Vol. 10406, SPIE Washington, USA, 2017.
- 30K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, L. H. Spangler, Appl. Optics 2006, 45, 1839.
- 31M. Brydegaard, A. Gebru, S. Svanberg, Prog. Electromagn. Res. 2014, 147, 141.
- 32E. Malmqvist, S. Jansson, S. Torok, M. Brydegaard, IEEE J. Select. Top. Quant. Electron. 2016, 22, 327.
- 33M. Brydegaard, A. Gebru, C. Kirkeby, S. Åkesson, H. Smith, in ILRC 27, New York, NY, 2016.
- 34M. Brydegaard, PLoS One 2015, 10, e0135231.
- 35A. Gebru, M. Brydegaard, E. Rohwer, P. Neethling, Probing insect backscatter cross-section and melanization using kHz optical remote detection system, Proc. SPIE 9975, Remote Sensing and Modeling of Ecosystems for Sustainability XIII, 997504 (19 September 2016); https://doi.org/10.1117/12.2236010
10.1117/12.2236010 Google Scholar
- 36M. Brydegaard, J. Larsson, S. Török, E. Malmqvist, G. Zhao, S. Jansson, M. Andersson, S. Svanberg, S. Åkesson, F. Laurell, J. Bood, in ILRC 28, Bucharest, Romania, 2017.
- 37S. Zhu, E. Malmqvist, W. Li, S. Jansson, Y. Li, Z. Duan, K. Svanberg, H. Feng, Z. Song, G. Zhao, M. Brydegaard, S. Svanberg, Applied Physics B, 2017, 123.
- 38M. Brydegaard, in Imaging and Applied Optics, Seattle, WA, 2014, p. LW2D.6.
- 39L. Mei, P. Guan, Opt. Lett. 2017, 42, 3562.
- 40J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, Opt. Exp. 2005, 13, 5853.
- 41S. L. Jacques, B. W. Pogue, J. Biomed. Opt. 2008, 13, 041302.
- 42S. L. Jacques, Phys. Med. Biol. 2013, 58, R37.
- 43M. Burresi, L. Cortese, L. Pattelli, M. Kolle, P. Vukusic, D. S. Wiersma, U. Steiner, S. Vignolini, Sci. Rep. 2014, 4.
- 44G. M. Hale, M. R. Querry, Appl. Optics 1973, 12, 555.
- 45H. Pratt, C. Stojanovich, US Department of Health, Education, and Welfare Public Health Service, Vol. 191, US Government Printing Office, Washington, DC 1969.
- 46S. L. Jacques, in Optical-Thermal Response of Laser-Irradiated Tissue (Eds: A. J. Welch, M. J. C. Gemert), Springer: Berlin, Germany, 2010, p. 109.
10.1007/978-90-481-8831-4_5 Google Scholar
- 47S. L. Jacques, in Handbook of Biomedical Optics (Eds: D. A. Boas, C. Pitris, N. Ramanujam), CRC Press: Boca Raton, Florida, USA, 2016, p. 649.
- 48M. F. Land, Prog. Biophys. Mol. Biol. 1972, 24, 75.
- 49I. Potamitis, I. Rigakis, Appl. Acoust. 2016, 109, 54.
- 50A. Moore, R. H. Miller, Ann. Entomol. Soc. Am. 2002, 95, 1.
- 51M. J. Lehane, The Biology of Blood-sucking in Insects, Cambridge University Press: Cambridge, England, 2005.
10.1017/CBO9780511610493 Google Scholar
- 52M. A. B. Deakin, J. Insect Sci. 2010, 10, 96.
- 53G. J. Berman, Z. J. Wang, J. Fluid Mech. 2007, 582, 153.
- 54R. J. Bomphrey, T. Nakata, P. Henningsson, H.-T. Lin, Phil. Trans. R. Soc. B 2016, 371, 20150389.
- 55V. Drake, Int. J. Remote Sens. 2016, 37, 3811.
- 56D. F. Silva, V. M. Souza, D. P. Ellis, E. J. Keogh, G. E. Batista, J. Intell. Robot. Syst. 2015, 80, 313.
- 57T. Ganchev, Computational Bioacoustics: Biodiversity Monitoring and Assessment, Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017.
10.1515/9781614516316 Google Scholar
- 58D. G. Stavenga, Mater. Today: Proc. 2014, 1, 109.
10.1016/j.matpr.2014.09.007 Google Scholar
- 59N. Katayama, J. K. Abbott, J. Kjærandsen, Y. Takahashi, E. I. Svensson, Proc. Natl. Acad. Sci. USA 2014, 111, 15144.
- 60E. Shevtsova, C. Hansson, D. H. Janzen, J. Kjaerandsen, Proc. Natl. Acad. Sci. USA 2011, 108, 668.
- 61V. S. Mayagaya, K. Michel, M. Q. Benedict, G. F. Killeen, R. A. Wirtz, H. M. Ferguson, F. E. Dowell, Am. J. Trop. Med. Hyg. 2009, 81, 622.
- 62K. H. Peiris, B. S. Drolet, L. W. Cohnstaedt, F. E. Dowell, Am. J. Agric. Sci. Technol. 2014, 2, 49.
- 63M. Sikulu, G. F. Killeen, L. E. Hugo, P. A. Ryan, K. M. Dowell, R. A. Wirtz, S. J. Moore, F. E. Dowell, Parasit. Vectors 2010, 3, 49.
- 64S. Majeed, S. R. Hill, G. Birgersson, R. Ignell, R. Soc. Open Sci. 2016, 3, 160467.
- 65B. Wondwosen, G. Birgersson, E. Seyoum, H. Tekie, B. Torto, U. Fillinger, S. R. Hill, R. Ignell, Sci. Rep. 2016, 6.
- 66S. Török, Master M.Sc. Thesis, Department of Physics, Lund University, 2013.
- 67A. Gebru, E. Rohwer, P. Neethling, M. Brydegaard, J. Appl. Remote Sens. 2014, 8, 083503.
- 68A. V. Oppenheim, R. W. Schafer, IEEE Signal Process. Mag. 2004, 21, 95.
- 69A. De Cheveigné, H. Kawahara, J. Acoust. Soc. Am. 2002, 111, 1917.
- 70M. R. Schroeder, J. Acoust. Soc. Am. 1968, 43, 829.
- 71I. Potamitis, Eco. Inform. 2014, 21, 40.
- 72G. E. Batista, E. J. Keogh, A. Mafra-Neto, E. Rowton, presented at the Proc. 17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Diego, CA, 2011.