Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy
Lingying Tong
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorCorresponding Author
Zhixiu Hao
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Correspondence
Zhixiu Hao, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. Email: [email protected]
Search for more papers by this authorChao Wan
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorShizhu Wen
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorLingying Tong
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorCorresponding Author
Zhixiu Hao
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Correspondence
Zhixiu Hao, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. Email: [email protected]
Search for more papers by this authorChao Wan
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorShizhu Wen
State Key Laboratory of Tribology, Tsinghua University, Beijing, China
Search for more papers by this authorAbstract
Cartilage damage and wear can lead to severe diseases, such as osteoarthritis, thus, many studies on the cartilage wear process have already been performed to better understand the cartilage wear mechanism. However, most characterization methods focus on the cartilage surface or the total wear extent. With the advantages of high spatial resolution and easy characterization, Raman microspectroscopy was employed for the first time to characterize full-depth changes in the cartilage extracellular matrix (ECM) after wear test. Sections from the cartilage samples after wear were compared with sections from the control group. Univariate and multivariate analyses both indicated that collagen content loss at certain depths (20%-30% relative to the cartilage surface) is possibly the dominating alteration during wear rather than changes in collagen fiber orientation or proteoglycan content. These findings are consistent with the observations obtained by scanning electron microscopy and histological staining. This study successfully used Raman microspectroscopy efficiently assess full-depth changes in cartilage ECM after wear test, thus providing new insight into cartilage damage and wear.
Supporting Information
Filename | Description |
---|---|
jbio201700217-sup-0001-author-biographies.docapplication/docx, 773 KB | Author Biographies |
jbio201700217-sup-0002-supinfo.docxWord 2007 document , 456.5 KB |
Figure S1 Comparison of relative intensities of collagen-associated bands at each depth. A for band 1260, B for band 1448, C for band 912, D for band 943. Significance between the wear and control groups is marked by stars (*P < .05, **P < .01). Figure S2 Comparison of relative intensities of PG-associated bands at each depth: (A) band 1340, (B) band 1370, (C) band 1065, (D) band 1126. Significance between the wear and control groups is marked by stars (*P < .05). Figure S3 Comparison of PC scores at each depth: (A) PC1, (B) PC2, (C) PC3. Significance between the wear and control groups is marked by stars (*P < .05, **P < .01). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1N.Schmitz, S.Laverty, V. B.Kraus, T.Aigner, Osteoarthr. Cartil. 2010, 18, S113.
- 2G. P.Stachowiak, G. W.Stachowiak, P.Podsiadlo, Proc. Inst. Mech. Eng. Part H 2006, 220, 831.
- 3S. L.Graindorge, G. W.Stachowiak, Wear 2000, 241, 143.
- 4J.Katta, Z.Jin, E.Ingham, J.Fisher, Osteoarthr. Cartil. 2009, 17, 662.
- 5L.McCann, E.Ingham, Z.Jin, J.Fisher, J. Biomech. 2009, 42, 1326.
- 6G.Verberne, Y.Merkher, G.Halperin, A.Maroudas, I.Etsion, Wear 2009, 266, 1216.
- 7J.Lizhang, J.Fisher, Z.Jin, A.Burton, S.Williams, Proc. Inst. Mech. Eng. Part H 2011, 225, 461.
- 8G. W.Stachowiak, P.Podsiadlo, J. Biomech. 1997, 30, 415.
- 9Z.Peng, Wear 2007, 262, 630.
- 10Y.Tian, J.Wang, Z.Peng, X.Jiang, Wear 2012, 282, 59.
- 11S. R.Oungoulian, S.Chang, O.Bortz, K. E.Hehir, K.Zhu, C. E.Willis, C. T.Hung, G. A.Ateshian, J. Biomech. Eng. 2013, 135.
- 12S. R.Oungoulian, K. M.Durney, B. K.Jones, C. S.Ahmad, C. T.Hung, G. A.Ateshian, J. Biomech. 2015, 48, 1957.
- 13J. S.Bell, C. P.Winlove, C. W.Smith, H.Dehghani, Biomaterials 2009, 30, 6394.
- 14E.Northwood, J.Fisher, Clin. Biomech. 2007, 22, 834.
- 15S. M. T.Chan, C. P.Neu, G.DuRaine, K.Komvopoulos, A. H.Reddi, Osteoarthr. Cartil. 2010, 18, 956.
- 16S. D.Kendell, C. A.Helms, J. W.Rampton, W. E.Garrett, L. D.Higgins, Am. J. Roentgenol. 2005, 184, 1486.
- 17A. S.Levy, J.Lohnes, S.Sculley, M.LeCroy, W.Garrett, Am. J. Sports Med. 1996, 24, 634.
- 18P. C.Pastoureau, E. B.Hunziker, J. P.Pelletier, Osteoarthr. Cartil. 2010, 18, S106.
- 19P.Pastoureau, S.Leduc, A.Chomel, F.De Ceuninck, Osteoarthr. Cartil. 2003, 11, 412.
- 20F. W.Roemer, A.Guermazi, Osteoarthr. Cartil. 2012, 20, 1440.
- 21L.Rieppo, S.Saarakkala, J. S.Jurvelin, J.Rieppo, J. Biomech. 2013, 46, 1269.
- 22J. T. A.Mäkelä, Z. S.Rezaeian, S.Mikkonen, R.Madden, S. K.Han, J. S.Jurvelin, W.Herzog, R. K.Korhonen, Osteoarthr. Cartil. 2014, 22, 869.
- 23R.Ellis, E.Green, C. P.Winlove, Connect. Tissue Res. 2009, 50, 29.
- 24B. G.Frushour, J. L.Koenig, Biopolymers 1975, 14, 379.
- 25A.Bonifacio, V.Sergo, Vib. Spectrosc. 2010, 53, 314.
- 26R. A. de Souza, M.Xavier, N. M.Mangueira, A. P.Santos, A. L.Barbosa Pinheiro, A. B.Villaverde, L. Jr.Silveira, Lasers Med. Sci. 2014, 29, 797.
- 27R.Kumar, K. M.Grønhaug, N. K.Afseth, V.Isaksen, C. de Lange Davies, J. O.Drogset, M. B.Lilledahl, Anal. Bioanal. Chem. 2015, 407, 8067.
- 28N. S. J.Lim, Z.Hamed, C. H.Yeow, C.Chan, Z.Huang, J. Biomed. Opt. 2011, 16.
- 29K. A.Esmonde-White, F. W. L.Esmonde-White, M. D.Morris, B. J.Roessler, Analyst 2011, 136, 1675.
- 30S.Gamsjaeger, K.Klaushofer, E. P.Paschalis, J. Raman Spectrosc. 2014, 45, 794.
- 31M.Pudlas, E.Brauchle, T. J.Klein, D. W.Hutmacher, K.Schenke-Layland, J. Biophotonics 2013, 6, 205.
- 32M. S.Bergholt, J.-P.St-Pierre, G. S.Offeddu, P. A.Parmar, M. B.Albro, J. L.Puetzer, M. L.Oyen, M. M.Stevens, ACS Cent. Sci. 2016, 2, 885.
- 33A.Bonifacio, C.Beleites, F.Vittur, E.Marsich, S.Semeraro, S.Paoletti, V.Sergo, Analyst 2010, 135, 3193.
- 34T.Pascart, B.Cortet, C.Olejnik, J.Paccou, H.Migaud, A.Cotten, Y.Delannoy, A.During, P.Hardouin, G.Penel, G.Falgayrac, Anal. Chem. 2016, 88, 2777.
- 35Y.Takahashi, T.Shishido, K.Yamamoto, Y.Sawaji, J.Nishida, G.Pezzotti, J. Raman Spectrosc. 2015, 46, 1166.
- 36Z.-M.Zhang, S.Chen, Y.-Z.Liang, Z.-X.Liu, Q.-M.Zhang, L.-X.Ding, F.Ye, H.Zhou, J. Raman Spectrosc. 2010, 41, 659.
- 37P.Du, W. A.Kibbe, S. M.Lin, Bioinformatics 2006, 22, 2059.
- 38C. A.Lieber, A.Mahadevan-Jansen, Appl. Spectrosc. 2003, 57, 1363.
- 39K. A.Esmonde-White, G. S.Mandair, F.Raaii, J. A.Jacobson, B. S.Miller, A. G.Urquhart, B. J.Roessler, M. D.Morris, J. Biomed. Opt. 2009, 14, 034013.
- 40A.Levillain, C.Boulocher, S.Kaderli, E.Viguier, D.Hannouche, T.Hoc, H.Magoariec, Osteoarthr. Cartil. 2015, 23, 1186.
- 41H.Hotta, H.Yamada, H.Takaishi, T.Abe, H.Morioka, T.Kikuchi, K.Fujikawa, Y.Toyama, J. Orthop. Sci. 2005, 10, 595.
- 42T. J.Klein, M.Chaudhry, W. C.Bae, R. L.Sah, J. Biomech. 2007, 40, 182.
- 43M.Kazanci, P.Roschger, E. P.Paschalis, K.Klaushofer, P.Fratzl, J. Struct. Biol. 2006, 156, 489.
- 44R. F.Egerton, P.Li, M.Malac, Micron 2004, 35, 399.