An Optical Microreactor Enabling In Situ Spectroscopy Combined with Fast Gas-Liquid Mass Transfer
Sebastian Ponce
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorHauke Christians
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorAlfons Drochner
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorCorresponding Author
Bastian J. M. Etzold
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Correspondence: Bastian J. M. Etzold ([email protected]), Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.Search for more papers by this authorSebastian Ponce
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorHauke Christians
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorAlfons Drochner
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Search for more papers by this authorCorresponding Author
Bastian J. M. Etzold
Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
Correspondence: Bastian J. M. Etzold ([email protected]), Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.Search for more papers by this authorAbstract
A liquid core waveguide membrane microreactor combining intense light matter interaction for in situ sensing and/or photo activation and excellent gas-liquid mass transfer is presented. Basis is a liquid-filled Teflon AF tube, which provides light transmission within the liquid core and gas permeation through the wall. The study shows that a wide spectral range (UV-vis) with relatively low optical losses is accessible. A working regime preventing gas bubble formation was deduced for semi-batch and in flow operation for gas pressures up to 8 bar. Residence time distribution experiments revealed Bodenstein numbers from 21 to 60 in the studied flow range. As example, the methylene blue catalyzed oxidation of D-glucose by O2 was studied at different pressures, while methylene blue was monitored in situ.
Supporting Information
Filename | Description |
---|---|
cite201800061-sup-0001-misc_information.pdf598 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 T. Noël, V. Hessel, ChemSusChem 2013, 6 (3), 405 – 407. DOI: https://doi.org/10.1002/cssc.201200913
- 2 K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem., Int. Ed. 2004, 43 (4), 406 – 446. DOI: https://doi.org/10.1002/anie.200300577
- 3 X. Yao, Y. Zhang, L. Du, J. Liu, J. Yao, Renewable Sustainable Energy Rev. 2015, 47, 519 – 539. DOI: https://doi.org/10.1016/j.rser.2015.03.078
- 4 P. Sobieszuk, J. Aubin, R. Pohorecki, Chem. Eng. Technol. 2012, 35 (8), 1346 – 1358. DOI: https://doi.org/10.1002/ceat.201100643
- 5 A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. S. J. Russell, Chem. Soc. Rev. 2013, 42 (22), 8629 – 8648. DOI: https://doi.org/10.1039/c3cs60128e
- 6 M. Schmidt, A. M. Cubillas, N. Taccardi, T. G. Euser, T. Cremer, F. Maier, H. P. Steinrück, P. S. J. Russell, P. Wasserscheid, B. J. Etzold, ChemCatChem 2013, 5 (3), 641 – 650. DOI: https://doi.org/10.1002/cctc.201200676
- 7 K. Gilmore, P. H. Seeberger, Chem. Rec. 2014, 14 (3), 410 – 418. DOI: https://doi.org/10.1002/tcr.201402035
- 8 J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025. DOI: https://doi.org/10.3762/bjoc.8.229
- 9 D. Cambié, C. Bottecchia, N. J. Straathof, V. Hessel, T. Noel, Chem. Rev. 2016, 116 (17), 10276 – 10341. DOI: https://doi.org/10.1021/acs.chemrev.5b00707
- 10 J. S. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, P. S. J. Russell, Chem. Eur. J. 2010, 16 (19), 5607 – 5612. DOI: https://doi.org/10.1002/chem.201000496
- 11 A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, P. S. J. Russell, Chem. Eur. J. 2012, 18 (6), 1586 – 1590. DOI: https://doi.org/10.1002/chem.201102424
- 12 A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. S. J. Russell, P. Wasserscheid, B. J. Etzold, Adv. Mater. Interfaces 2014, 1 (5), 1300093. DOI: https://doi.org/10.1002/admi.201300093
- 13 S. Ponce, M. Munoz, A. M. Cubillas, T. G. Euser, G. R. Zhang, P. S. J. Russell, P. Wasserscheid, B. J. Etzold, Chem. Ing. Tech. 2018, 90 (5), 653 – 659. DOI: https://doi.org/10.1002/cite.201700131
- 14 Fluoropolymers 2 (Eds: G. Hougham, P. E. Cassidy, K. Johns, T. Davidson), Springer Science & Business Media, New York 1999.
- 15 Z. A. Wang, Y. Wang, W.-J. Cai, S.-Y. Liu, Talanta 2002, 57 (1), 69 – 80. DOI: https://doi.org/10.1016/S0039-9140(02)00008-5
- 16 M. O'Brien, I. R. Baxendale, S. V. Ley, Org. Lett. 2010, 12 (7), 1596 – 1598. DOI: https://doi.org/10.1021/ol100322t
- 17 T. Dallas, P. K. Dasgupta, TrAC, Trends Anal. Chem. 2004, 23 (5), 385 – 392. DOI: https://doi.org/10.1016/S0165-9936(04)00522-9
- 18 T. Frosch, D. Yan, J. r. Popp, Anal. Chem. 2013, 85 (13), 6264 – 6271. DOI: https://doi.org/10.1021/ac400365f
- 19 L. Kröckel, T. Frosch, M. A. Schmidt, Anal. Chim. Acta 2015, 875, 1 – 6. DOI: https://doi.org/10.1016/j.aca.2015.03.028
- 20 R. D. Waterbury, W. Yao, R. H. Byrne, Anal. Chim. Acta 1997, 357 (1), 99 – 102. DOI: https://doi.org/10.1016/S0003-2670(97)00530-8
- 21 P. K. Dasgupta, Z. Genfa, S. K. Poruthoor, S. Caldwell, S. Dong, S.-Y. Liu, Anal. Chem. 1998, 70 (22), 4661 – 4669. DOI: https://doi.org/10.1021/ac980803t
- 22 Z. A. Wang, F. N. Sonnichsen, A. M. Bradley, K. A. Hoering, T. M. Lanagan, S. N. Chu, T. R. Hammar, R. Camilli, Environ. Sci. Technol. 2015, 49 (7), 4441 – 4449. DOI: https://doi.org/10.1021/es504893n
- 23 X. Liu, R. H. Byrne, L. Adornato, K. K. Yates, E. Kaltenbacher, X. Ding, B. Yang, Environ. Sci. Technol. 2013, 47 (19), 11106 – 11114. DOI: https://doi.org/10.1021/es4014807
- 24 R. H. Byrne, X. Liu, E. Kaltenbacher, K. Sell, Anal. Chim. Acta 2002, 451 (2), 221 – 229. DOI: https://doi.org/10.1016/S0003-2670(01)01423-4
- 25 A. Polyzos, M. O'Brien, T. P. Petersen, I. R. Baxendale, S. V. Ley, Angew. Chem., Int. Ed. 2011, 50 (5), 1190 – 1193. DOI: https://doi.org/10.1002/anie.201006618
- 26 G. Wu, E. Cao, S. Kuhn, A. Gavriilidis, Chem. Eng. Technol. 2017, 40 (12), 2346 – 2350. DOI: https://doi.org/10.1002/ceat.201700196
- 27 M. Brzozowski, M. O'Brien, S. V. Ley, A. Polyzos, Acc. Chem. Res. 2015, 48 (2), 349 – 362. DOI: https://doi.org/10.1021/ar500359m
- 28 K. Pavlíková, P. Ševčík, Int. J. Chem. Kinet. 1999, 31 (6), 463 – 468.
- 29 M. O'Brien, N. Taylor, A. Polyzos, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2 (7), 1250 – 1257. DOI: https://doi.org/10.1039/c1sc00055a
- 30 L. Yang, K. F. Jensen, Org. Process Res. Dev. 2013, 17 (6), 927 – 933. DOI: https://doi.org/10.1021/op400085a