Volume 90, Issue 11 pp. 1855-1863
Research Article

An Optical Microreactor Enabling In Situ Spectroscopy Combined with Fast Gas-Liquid Mass Transfer

Sebastian Ponce

Sebastian Ponce

Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany

Search for more papers by this author
Hauke Christians

Hauke Christians

Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany

Search for more papers by this author
Alfons Drochner

Alfons Drochner

Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany

Search for more papers by this author
Bastian J. M. Etzold

Corresponding Author

Bastian J. M. Etzold

Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany

Correspondence: Bastian J. M. Etzold ([email protected]), Technische Universität Darmstadt, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.Search for more papers by this author
First published: 21 September 2018
Citations: 10

Abstract

A liquid core waveguide membrane microreactor combining intense light matter interaction for in situ sensing and/or photo activation and excellent gas-liquid mass transfer is presented. Basis is a liquid-filled Teflon AF tube, which provides light transmission within the liquid core and gas permeation through the wall. The study shows that a wide spectral range (UV-vis) with relatively low optical losses is accessible. A working regime preventing gas bubble formation was deduced for semi-batch and in flow operation for gas pressures up to 8 bar. Residence time distribution experiments revealed Bodenstein numbers from 21 to 60 in the studied flow range. As example, the methylene blue catalyzed oxidation of D-glucose by O2 was studied at different pressures, while methylene blue was monitored in situ.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.