Smart Equipment – A Perspective Paper
Corresponding Author
Norbert Kockmann
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Correspondence: Norbert Kockmann ([email protected]), Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany.Search for more papers by this authorLukas Bittorf
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorWaldemar Krieger
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorFelix Reichmann
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorMira Schmalenberg
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorSebastian Soboll
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorCorresponding Author
Norbert Kockmann
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Correspondence: Norbert Kockmann ([email protected]), Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany.Search for more papers by this authorLukas Bittorf
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorWaldemar Krieger
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorFelix Reichmann
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorMira Schmalenberg
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorSebastian Soboll
Technische Universität Dortmund, Fakultät Bio- und Chemieingenieurwesen (BCI), Arbeitsgruppe Apparatedesign, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Search for more papers by this authorAbstract
Chemical equipment has to form a robust and efficient process space and was developed over the last centuries to very sophisticated, often highly specialized devices. With the upcoming information technology new opportunities arise with integrated sensors, and advanced control systems. Smart equipment is designed in form of intelligent modules. Furthermore, adaptive and integrated actuators convert the control signals to directly influence the process, thus, they can be described as responsive equipment. This contribution will give an overview of some activities in this field.
References
- 1 S. A. Owens, M. R. Perkins, R. B. Eldridge, K. W. Schulz, R. A. Ketcham, Ind. Eng. Chem. Res. 2013, 52 (5), 2032 – 2045.
- 2 C. Soulaine, P. Horgue, J. Franc, M. Quintard, AIChE J. 2014, 60 (10), 3665 – 3674.
- 3 O. Krätz, 7000 Jahre Chemie, Callway, München 1990.
- 4 H. Kaufmann, Toledo – Wege und Wirkung arabischer Wissenschaft in Europa, Econ, Wien 1977.
- 5 J. Needham, Wissenschaftlicher Universalismus – Über Bedeutung und Besonderheit der chinesischen Wissenschaft, Wissenschaft, Vol. 264, Suhrkamp, Frankfurt/Main, 1979.
- 6 V. Biringuccio, De la pirotechnica, Venetia, 1559. urn:nbn:de:bvb:12-bsb10208729-8
- 7 A. Libavius, Praxis Alchimiae, Frankfurt, 1604. urn:nbn:de:bvb:12-bsb10073209e2
- 8 G. Agricola, De Re Metallica Libri XII, Marix Verlag, Wiesbaden 2007.
- 9 E. L. Schubarth, Elemente der Technischen Chemie, Band 1, A. Rücker, Berlin 1831.
- 10www.vci.de/die-branche/zahlen-berichte/chemiewirtschaft-in-zahlen-archiv.jsp (Accessed on May 05, 2018)
- 11 N. Kockmann, CITplus 2017, 7 – 8, 44 – 45.
- 12 W. Brötz, Grundriß der chemischen Reaktionstechnik, Verlag Chemie, Weinheim 1958.
- 13 R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York 1960.
- 14 C. C. Oldenburg, H. F. Rase, AIChE J. 1957, 3 (4), 462 – 466.
- 15 C. P. Stemmet, J. Van Der Schaaf, B. F. M. Kuster, J. C. Schouten, Chem. Eng. Res. Des. 2006, 84 (12), 1134 – 1141.
- 16
Micro Process Engineering (Ed: N. Kockmann), Wiley-VCH, Weinheim
2006.
10.1002/9783527616749 Google Scholar
- 17 Perry's Chemical Engineers' Handbook (Ed: J. O. Maloney), 8th ed., McGraw-Hill, New York 2008.
- 18 Coulson and Richardson's Chemical Engineering (Eds: R. P. Chhabra, V. Shankar), 7th ed., Butterworth-Heinemann, Oxford 2017.
- 19 Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., John Wiley & Sons, New York 2004.
- 20 Winnacker-Küchler: Chemische Technik (Eds: R. Dittmeyer, W. Keim, G. Kreysa, A. Oberholz), 5. Aufl., Wiley-VCH, Weinheim 2006.
- 21 E. Weiss, H. Joost, J. Rudolph, Chem. Ing. Tech. 1996, 68 (11), 1442 – 1447.
- 22 E. Weiß, Chem. Ing. Tech. 2001, 73 (4), 314 – 321.
- 23 S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R. D. Braatz, C. L. Cooney, J. Evans, T. F. Jamison, K. F. Jensen, Angew. Chem., Int. Ed. 2013, 52 (47), 12359 – 12363.
- 24 N. Weeranoppanant, A. Adamo, G. Saparbaiuly, E. Rose, C. Fleury, B. Schenkel, K. F. Jensen, Ind. Eng. Chem. Res. 2017, 56 (14), 4095 – 4103.
- 25 D. M. Roberge, B. Zimmermann, F. Rainone, M. Gottsponer, M. Eyholzer, N. Kockmann, Org. Process Res. Dev. 2008, 12 (5), 905 – 910.
- 26 M. D. Johnson, S. A. May, J. R. Calvin, J. Remacle, J. R. Stout, W. D. Diseroad, N. Zaborenko, B. D. Haeberle, W. M. Sun, M. T. Miller, J. Brennan, Org. Process Res. Dev. 2012, 16 (5), 1017 – 1038.
- 27 N. Kockmann, Heat Transfer Eng. 2017, 38 (14 – 15), 1316 – 1330.
- 28 N. Kockmann, Chem. Today 2017, 35 (4), 26 – 28.
- 29 N. Kockmann, ChemBioEng Rev. 2016, 3 (1), 5 – 15.
- 30 J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19 – 42.
- 31 V. Hessel, D. Kralisch, N. Kockmann, Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes, Wiley-VCH, Weinheim 2015.
- 32 P. Knapkiewicz, R. Walczak, in Microsensors (Ed: I. Minin), InTech, Rijeka 2010. www.intechopen.com/books/microsensors/microsensors-for-microreaction-and-lab-on-a-chip-applications
- 33 L. Hohmann, S. K. Kurt, N. P. Far, D. Vieth, N. Kockmann, in Proc. of ASME 2016 14th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2016-8008, American Society of Mechanical Engineers, New York 2016.
- 34 R. M. Tiggelaar, J. W. Berenschot, J. H. de Boer, R. G. P. Sanders, J. G. E. Gardeniers, R. E. Oosterbroek, A. van den Berg, M. C. Elwenspoek, Lab Chip 2005, 5 (3), 326 – 336.
- 35 P. Knapkiewicz, J. Micromech. Microeng. 2013, 23 (3), 035014.
- 36
C. Hany, C. Pradere, J. Toutain, J.-C. Batsale, Quant. Infrared Thermogr. J.
2008, 5 (2), 211 – 229.
10.3166/qirt.5.211-229 Google Scholar
- 37 M. A. Gonzalez-Reyna, E. Alvarado-Mendez, J. M. Estudillo-Ayala, E. Vargas-Rodriguez, M. E. Sosa-Morales, J. M. Sierra-Hernandez, D. Jauregui-Vazquez, R. Rojas-Laguna, IEEE Photonics Technol. Lett. 2015, 27 (11), 1141 – 1144.
- 38 S. Silvestri, E. Schena, Micromachines 2012, 3 (2), 225 – 243.
- 39 C. Das, F. Payne, Sens. Actuators, A 2016, 241, 104 – 112.
- 40 P. Plouffe, M. Bittel, J. Sieber, D. M. Roberge, A. Macchi, Chem. Eng. Sci. 2016, 143, 216 – 225.
- 41 C.-Y. Huang, Y. Matsuda, J. W. Gregory, H. Nagai, K. Asai, Microfluid. Nanofluid. 2015, 18 (5 – 6), 739 – 753.
- 42 A. Orth, E. Schonbrun, K. B. Crozier, Lab Chip 2011, 11 (22), 3810 – 3815.
- 43 A. Kuoni, R. Holzherr, M. Boillat, N. F. de Rooij, J. Micromech. Microeng. 2003, 13 (4), S103 – S107.
- 44 X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T.-Y. Hsia, G. Koley, J. Micromech. Microeng. 2013, 23 (2), 025022.
- 45 J.-Y. Huang, J. Van Roosbroeck, A. Bueno Martinez, T. Geernaert, F. Berghmans, C. Caucheteur, B. Van Hoe, E. Lindner, in 25th Int. Conf. on Optical Fiber Sensors, Proceedings Vol. 10323, Institute of Electrical and Electronics Engineers, New York 2017, 103233D.
- 46 M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, D. L. Sadowski, Sens. Actuators, A 2005, 118 (2), 212 – 221.
- 47 C. Hoera, A. Kiontke, M. Pahl, D. Belder, Sens. Actuators, B 2018, 255 (2), 2407 – 2415.
- 48 F. Reichmann, S. Millhoff, Y. Jirmann, N. Kockmann, in Proc. of ASME 2017 15th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2017-5539, American Society of Mechanical Engineers, New York 2017.
- 49 A. Zogg, A Combined Approach Using Calorimetry and IR-ATR Spectroscopy for the Determination of Kinetic and Thermodynamic Reaction Parameters, Dissertation, ETH Zürich 2003.
- 50
J. Lienig, H. Brümmer, Elektronische Gerätetechnik: Grundlagen für das Entwickeln elektronischer Baugruppen und Geräte, Springer Vieweg, Berlin
2014.
10.1007/978-3-642-40962-2 Google Scholar
- 51 K. Schierle-Arndt, W. Hermes, Chem. Unserer Zeit 2013, 47 (2), 92 – 101.
- 52 G. Glotz, D. J. Knoechel, P. Podmore, H. Gruber-Woelfler, C. O. Kappe, Org. Process Res. Dev. 2017, 21 (5), 763 – 770.
- 53 J. Antes, M. Gegenheimer, S. Löbbecke, H. Krause, in Proc. of the 12th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences, Chemical and Biological Microsystems Society, Washington, D.C. 2008.
- 54 F. Reichmann, S. Millhoff, Y. Jirmann, N. Kockmann, Chem. Eng. Technol. 2017, 40 (11), 2144 – 4154.
- 55 F. Reichmann, Y. Jirmann, N. Kockmann, in Proc. of ASME 2018 16th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2018-7627, American Society of Mechanical Engineers, New York 2018.
- 56 G. L. Morini, Y. Yang, H. Chalabi, M. Lorenzini, Exp. Therm. Fluid Sci. 2011, 35 (6), 849 – 865.
- 57 J. T. W. Kuo, L. Yu, E. Meng, Micromachines 2012, 3 (3), 550 – 573.
- 58 N. Kockmann, in Encyclopedia of Microfluidics and Nanofluidics (Ed: D. Li), Springer, Boston, MA 2013.
- 59 R. Lindken, M. Rossi, S. Große, J. Westerweel, Lab Chip 2009, 9 (17), 2551 – 2567.
- 60 L. C. Lynnworth, Ultrasonic Measurements for Process Control – Theory, Techniques, Applications, Academic Press, San Diego, CA 1989.
- 61 Y. Takeda, Exp. Therm. Fluid Sci. 1995, 10 (4), 444 – 453.
- 62 P. Hauptmann, N. Hoppe, A. Püttmer, Meas. Sci. Technol. 2002, 13 (8), R73 – R83.
- 63 S. Soboll, L. Bittorf, N. Kockmann, Chem. Eng. Technol. 2018, 41 (1), 134 – 142.
- 64 L. Hohmann, L. Löbnitz, C. Menke, B. Santhirakumaran, P. Stier, F. Stenger, F. Dufour, G. Wiese, S. zur Horst-Meyer, B. Kusserow, W. Zang, H. Nirschl, N. Kockmann, Chem. Eng. Technol. 2018, 41 (6), 1152 – 1164.
- 65 P. Kolb, Hydrodynamik und Stoffaustausch in einem gerührten Miniplantextraktor der Bauart Kühni, Dissertation, TU Kaiserslautern 2004.
- 66 W. Krieger, J. Lamsfuß, W. Zhang, N. Kockmann, Chem. Eng. Technol. 2017, 40 (11), 2134 – 2143.
- 67 P. Rostron, S. Gaber, D. Gaber, Int. J. Eng. Tech. Res. 2016, 6 (1), 50 – 64.
- 68 S. Schwolow, F. Braun, M. Rädle, N. Kockmann, T. Röder, Org. Process Res. Dev. 2015, 19 (9), 1286 – 1292.
- 69 I. Craig, C. Aldrich, R. Braatz, F. Cuzzola, E. Domlan, S. Engell, J. Hahn, V. Havlena, A. Horch, B. Huang, M. Khanbaghi, in The Impact of Control Technology (Eds: T. Samad, A. M. Annaswamy), IEEE Control Systems Society, New York 2011.
- 70
O. Mayr, Sci. Am.
1970, 223 (4), 110 – 119.
10.1038/scientificamerican1070-110 Google Scholar
- 71
J. C. Maxwell, Proc. R. Soc. London
1868, 16, 270 – 283.
10.1098/rspl.1867.0055 Google Scholar
- 72
A. Hurwitz, Math. Ann.
1895, 46, 273 – 285.
10.1007/BF01446812 Google Scholar
- 73
N. Minorsky, J. Am. Soc. Nav. Eng.
1922, 34 (2), 280 – 309.
10.1111/j.1559-3584.1922.tb04958.x Google Scholar
- 74 S. Bennett, A History of Control Engineering 1930 – 1955, IEE Control Engineering Series, Vol. 47, Peter Peregrinus, Stevenage 1992.
- 75 J. Rifkin, The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era, G. P. Putnam's Sons, New York 1995, 66.
- 76 B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, Behav. Brain Sci. 2017, 40, e253.
- 77 D. A. Sanders, A. Gegov, Artificial Intelligence for Control Engineering, Control Engineering 2015. www.controleng.com/single-article/artificial-intelligence-for-control-engineering
- 78 A. K. Singh, B. Tyagi, V. Kumar, Chemical Product and Process Modeling 2014, 9 (1), 71 – 87.
- 79 Y. Li, K. H. Ang, G. C. C. Chong, IEEE Control Systems 2006, 26 (1), 32 – 41.
- 80 M. J. Willis, M. T. Tham, Advanced Process Control, University of Newcastle upon Tyne, Newcastle upon Tyne, 1994.
- 81
F. Stenger, D. Schmalz, T. Bieringer, A. Brodhagen, C. Dreiser, A. Schweiger, Chem. Ing. Tech.
2016, 88 (9), 1217. DOI: https://doi.org/10.1002/cite.201650240
10.1002/cite.201650240 Google Scholar
- 82 S. Buchholz, Flexible, Fast and Future Production Processes, Final Report, Bayer Technology Services GmbH, Leverkusen 2014. www.cordis.europa.eu/result/rcn/149331_en.html (Accessed on March 22, 2018)
- 83www.hitec-zang.de/en/microreaction-systems.html (Accessed on March 22, 2018)
- 84
J. Bernshausen, A. Haller, T. Holm, M. Hoernicke, M. Obst, J. Ladiges, atp edition
2016, 1 – 2, 72 – 81.
10.17560/atp.v58i01-02.554 Google Scholar
- 85 M. Strassner, RFID im Supply Chain Management, Dissertation, Universität St. Gallen 2005.
- 86
Logistik – eine Industrie, die (sich) bewegt: Strategien und Lösungen entlang der Supply Chain 4.0 (Ed: P. H. Voß), Springer, Wiesbaden
2015.
10.1007/978-3-658-10609-6 Google Scholar
- 87
Industrie 4.0 in Produktion, Automatisierung und Logistik (Eds: T. Bauernhansl, M. ten Hompel, B. Vogel-Heuser), Springer, Wiesbaden
2014.
10.1007/978-3-658-04682-8 Google Scholar
- 88 M. Zillmann, Keine Industrie 4.0 ohne Digitalisierung der Supply Chain, Whitepaper, Lünendonk GmbH, Mindelheim 2016.
- 89 D. Bueno Espíndola, L. Fumagalli, M. Garetti, C. E. Pereira, S. S. C. Botelho, R. Ventura Henriques, Comput. Ind. 2013, 64 (4), 376 – 391.
- 90 M. Gerlach, R. Gross, T. Steckenreiter, J. Traenkle, A. Tulke, Chem. Ing. Tech. 2016, 88 (6), 722 – 734.
- 91 M. Eilermann, C. Post, D. Schwarz, S. Leufke, G. Schembecker, C. Bramsiepe, Chem. Eng. Sci. 2017, 167, 278 – 287.
- 92 H. Mothes, Chem. Ing. Tech. 2015, 87 (9), 1159 – 1172.
- 93 L. Hohmann, K. Kössl, N. Kockmann, G. Schembecker, C. Bramsiepe, Chem. Eng. Process. 2017, 111, 115 – 126.
- 94 H. R. Kharvani, F. Ilami Doshmanziari, A. E. Zohir, D. Jalali-Vahid, Heat Mass Transfer 2016, 52 (9), 1779 – 1789.
- 95 K. Bode, R. Hooper, B. Paterson, I. Wilson, W. Augustin, S. Scholl, Chem. Ing. Tech. 2006, 78 (5), 613 – 620.
- 96 M. Jarrahi, C. Castelain, H. Peerhossaini, Exp. Fluids 2011, 50 (6), 1539 – 1558.
- 97 M. Schmalenberg, L. Hohmann, N. Kockmann, in Proc. of ASME 2018 16th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2018-7660, American Society of Mechanical Engineers, Dubrovnik 2018.
- 98 S. Soboll, I. Hagemann, N. Kockmann, Chem. Ing. Tech. 2017, 89 (12), 1611 – 1618.
- 99 W. G. Fischer, Fette, Seifen, Anstrichm. 1970, 72 (6), 444 – 454.
- 100 L. Bittorf, M. Schrimpf, N. Kockmann, Chem. Ing. Tech. 2018, 90 (9), 1313.
- 101 D. Sudhoff, M. Leimbrink, M. Schleinitz, A. Górak, P. Lutze, Chem. Eng. Res. Des. 2015, 94, 72 – 89.
- 102 L.-M. Terdenge, S. Heisel, G. Schembecker, K. Wohlgemuth, Chem. Eng. Sci. 2015, 133, 157 – 169.
- 103 J. M. Kim, S. M. Chang, K. S. Kim, M. K. Chung, W. S. Kim, Colloids Surf., A 2011, 375, 193 – 199.
- 104 B. Gielen, J. Jordens, L. C. J. Thomassen, L. Braeken, T. van Gerven, Crystals 2017, 7 (2), 40.
- 105 S. K. Kurt, F. Warnebold, K. D. P. Nigam, N. Kockmann, Chem. Eng. Sci. 2017, 169, 164 – 178.
- 106 W. Krieger, J. Lamsfuß, N. Kockmann, in Proc. of ASME 2017 15th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2017-5538, American Society of Mechanical Engineers, New York 2017.
- 107 M. Kalem, K. Becker, W. Bäcker, Kontinuierlicher Miniplant-Abscheider: Ein Zwischenschritt auf dem Weg vom Laborversuch zum technischen Abscheider, ProcessNet Meeting Extraktion, Frankfurt, March 2018.
- 108http://enpro-initiative.de/TeiA.html (Accessed on March 16, 2018)
- 109 L. Hohmann, R. Gorny, O. Klaas, J. Ahlert, K. Wohlgemuth, N. Kockmann, Chem. Eng. Technol. 2016, 39 (7), 1268 – 1280.
- 110 J. Koralewska, K. Piotrowski, B. Wierzbowksa, A. Matynia, Chin. J. Chem. Eng. 2008, 17 (2), 330 – 339.
- 111 M. G. Gelhausen, S. K. Kurt, N. Kockmann, in Proc. of ASME 2014 12th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM2014-21779, American Society of Mechanical Engineers, Chicago 2014.
- 112 L. Hohmann, T. Greinert, O. Mierka, S. Turek, G. Schembecker, E. Bayraktar, K. Wohlgemuth, N. Kockmann, Cryst. Growth Des. 2018, 18 (3), 1459 – 1473.
- 113 E. Kyrkjebo, P. Liljebäck, A. A. Transeth, in ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic Engineering, Volume 1: Offshore Technology, American Society of Mechanical Engineers, New York 2009, 667 – 674.
- 114 G. Dlugosch, VDI Nachr. 2014, 7. www.vdi-nachrichten.com/Technik-Wirtschaft/Datenbrille-bringt-Durchblick-in-Lagerlogistik
- 115
C. Bridgewater, M. Griffin, A. Retik, in Automation and Robotics in Construction XI, Elsevier, Amsterdam
1994, 249 – 256.
10.1016/B978-0-444-82044-0.50037-0 Google Scholar
- 116 T. S. Mujber, T. Szecsi, M. S. J. Hashmi, J. Mater. Process. Technol. 2004, 155 – 156, 1834 – 1838.
- 117www.linde-engineering.com/en/innovations/virtual-reality-redefines-plant-engineering/index.html (Accessed on March 16, 2018)