1D Model for Coupled Simulation of Steam Cracker Convection Section with Improved Evaporation Model†
Pieter Verhees
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorIsmaël Amghizar
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorJühl Goemare
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorAbdul Rahman Akhras
Saudi Aramco, R&D Center, Dhahran, Saudi Arabia.
Search for more papers by this authorGuy B. Marin
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorKevin M. Van Geem
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorCorresponding Author
Geraldine J. Heynderickx
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Ghent University, Technologiepark 914, 9052 Ghent, BelgiumSearch for more papers by this authorPieter Verhees
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorIsmaël Amghizar
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorJühl Goemare
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorAbdul Rahman Akhras
Saudi Aramco, R&D Center, Dhahran, Saudi Arabia.
Search for more papers by this authorGuy B. Marin
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorKevin M. Van Geem
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Search for more papers by this authorCorresponding Author
Geraldine J. Heynderickx
Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Ghent University, Technologiepark 914, 9052 Ghent, BelgiumSearch for more papers by this authorDedicated to Prof. Dr.-Ing. Andreas Seidel-Morgenstern on the occasion of his 60th birthday
Abstract
The radiation and convection section of a steam cracker are thermally coupled. Optimization and design requires a coupled simulation of both sections. In this work a 1D model for the convection section, CONVEC-1D, is developed. Several models for the different heat transfer phenomena are implemented and evaluated. For flow boiling, an empirical and a mechanistic model are developed and compared for both single- and multicomponent hydrocarbon feeds. The latter is performing best over a wide range of operating conditions, taking into account the different two-phase flow regimes. The coupled iterative procedure is demonstrated for an n-pentane steam cracker convection section.
References
- 1 H. Al-Haj Ibrahim, M. Al-Qassimi, Period. Polytech. Chem. Eng. 2010, 54 (1), 33 – 40.
- 2 J. L. Schweppe, C. Q. Torrijos, Hydrocarbon Process. Pet. Refin. 1964, 43 (6), 158 – 166.
- 3 S. Sahajpal, P. D. Shah, in Chemical, Civil and Mechanical Engineering Tracks of 3rd Nirma University International Conference on Engineering (Ed: U. Mehta), Curran Associates, Red Hook, NY 2013.
- 4 G. E. Zhang, B. Evans, Adv. Mater. Phys. Chem. 2012, 2 (4B), 169 – 172.
- 5 M. W. M. van Goethem et al., Chem. Eng. Res. Des. 2010, 88 (10A), 1305 – 1319. DOI: 10.1016/j.cherd.2010.02.003
- 6 C. Lowe et al., in 10th International Conference on Greenhouse Gas Control Technologies (Eds: J. Gale), Elsevier, Amsterdam 2011.
- 7 A. Morales-Fuentes, M. Picon-Nunez, G. T. Polley, S. Mendez-Diaz, Appl. Therm. Eng. 2014, 62 (2), 777 – 784. DOI: 10.1016/j.applthermaleng.2013.10.016
- 8 D. Mahajan, N. Gulwadi, Chem. Ind. Dig. 2012, 25 (8), 77 – 80.
- 9 G. Yu et al., Energy 2013, 51, 281 – 290. DOI: 10.1016/j.energy.2012.10.054
- 10 E. S. Van-Dal, C. Bouallou, J. Cleaner Prod. 2013, 57, 38 – 45. DOI: 10.1016/j.jclepro.2013.06.008
- 11 H. Ghasemi, M. Paci, A. Tizzanini, A. Mitsos, Energy 2013, 50, 412 – 428. DOI: 10.1016/j.energy.2012.10.039.
- 12 H. Ghasemi et al., Appl. Energy 2014, 131, 158 – 170. DOI: 10.1016/j.apenergy.2014.06.010
- 13 S. G. Kandlikar, J. Heat Transfer 1990, 112 (1), 219 – 228.
- 14 J. C. Chen, Ind. Eng. Chem. Process Des. Dev. 1966, 5 (3), 322 – 329. DOI: 10.1021/i260019a023.
- 15 I. L. Mostinski, Teploenergetika 1963, 10 (4), 66 – 71.
- 16 J. Thome, Wolverine engineering data book III, Wolverine Tube, Inc., Decatur, AL 2004, 12-1.
- 17 X. Boissieux, M. R. Heikal, R. A. Johns, Int. J. Refrig. 2000, 23 (4), 269 – 283. DOI: 10.1016/S0140-7007(99)00056-0
- 18 L. Wojtan, T. Ursenbacher, J. R. Thome, Int. J. Heat Mass Transfer 2005, 48 (14), 2970 – 2985. DOI: 10.1016/j.ijheatmasstransfer.2004.12.013
- 19 L. Wojtan, T. Ursenbacher, J. R. Thome, Exp. Thermal Fluid Sci. 2005, 29 (3), 383 – 392. DOI: 10.1016/j.expthermflusci.2004.05.017
- 20 L. Wojtan, T. Ursenbacher, J. R. Thome, Int. J. Heat Mass Transfer 2005, 48 (14), 2955 – 2969. DOI: 10.1016/j.ijheatmasstransfer.2004.12.012
- 21 J. R. Thome, J. El Hajal, A. Cavallini,, Int. J. Heat Mass Transfer 2003, 46 (18), 3365 – 3387. DOI: 10.1016/S0017-9310(03)00140-6
- 22 J. R. Thome, in Proc. of the Int. Symp. of Two-phase Flow Modeling and Experimentation (Eds: G. P. Celata, R. K. Shah), Edizioni ETS, Pisa 1995.
- 23 N. Kattan, J. R. Thome, D. Favrat, J. Heat Transfer 1998, 120 (1), 148 – 155. DOI: 10.1115/1.2830038
- 24 N. Kattan, J. R. Thome, D. Favrat, J. Heat Transfer 1998, 120 (1), 156 – 165. DOI: 10.1115/1.2830039
- 25 N. Kattan, J. Thome, D. Favrat, J. Heat Transfer 1998, 120 (1), 140 – 147.
- 26 F. W. Dittus, L. M. K. Boelter, Univ. Calif. Publ. Eng. 1930, 2, 443.
- 27 W. H. McAdams, Heat Transmission, 2nd ed., McGraw-Hill, New York 1942.
- 28 E. N. Sieder, G. E. Tate, Ind. Eng. Chem. 1936, 28 (12), 1429 – 1435. DOI: 10.1021/ie50324a027
- 29 V. Gnielinski, Int. J. Chem. Eng. 1976, 16 (2), 359 – 368.
- 30
B. Petukhov, Adv. Heat Transfer 1970, 6, 503 – 564.
10.1016/S0065-2717(08)70153-9 Google Scholar
- 31 R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York 1987.
- 32 J. A. Jossi, L. I. Stiel, G. Thodos, AIChE J. 1962, 8 (1), 59 – 63. DOI: 10.1002/aic.690080116
- 33
W. Sutherland, London, Edinburgh Dublin Philos. Mag. J. Sci. 1893, 36 (223), 507 – 531.
10.1080/14786449308620508 Google Scholar
- 34 C. Wilke, J. Chem. Phys. 1950, 18 (4), 517 – 519.
- 35 D. Green, R. Perry, Perry's Chemical Engineers' Handbook, 8th ed., McGraw-Hill Education, New York 2007.
- 36 E. Mason, S. Saxena, Phys. Fluids (1958 – 1988) 1958, 1 (5), 361 – 369.
- 37 A. Wassiljewa, Phys. Z. 1904, 5 (22), 737.
- 38 S. C. K. De Schepper, G. J. Heynderickx, G. B. Marin, Comput. Chem. Eng. 2009, 33 (1), 122 – 132. DOI: 10.1016/j.compchemeng.2008.07.013
- 39 O. Baker, Oil Gas J. 1954, 53, 185 – 195.
- 40 V. P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed., Taylor & Francis, London 2007.
- 41
J. G. Collier, J. R. Thome, Convective Boiling and Condensation, Oxford University Press, Oxford 1994.
10.1093/oso/9780198562825.001.0001 Google Scholar
- 42 S. C. De Schepper, G. J. Heynderickx, G. B. Marin, Chem. Eng. J. 2008, 138 (1), 349 – 357.
- 43 M. Shah, ASHRAE Trans. 1982, 88 (1), 185 – 196.
- 44 Z. Liu, R. H. S. Winterton, Int. J. Heat Mass Transfer 1991, 34 (11), 2759 – 2766. DOI: 10.1016/0017-9310(91)90234-6
- 45 K. E. Gungor, R. H. S. Winterton, Chem. Eng. Res. Des. 1987, 65 (2), 148 – 156.
- 46 X. Fang, Int. J. Heat Mass Transfer 2013, 66, 279 – 283. DOI: 10.1016/j.ijheatmasstransfer.2013.07.015
- 47 S. S. Bertsch, E. A. Groll, S. V. Garimella, Int. J. Heat Mass Transfer 2009, 52 (7 – 8), 2110 – 2118. DOI: 10.1016/j.ijheatmasstransfer.2008.10.022
- 48 A. E. Bergles, W. M. Rohsenow, J. Heat Transfer 1964, 86 (3), 365 – 372. DOI: 10.1115/1.3688697
- 49
T. Sato, H. Matsumura, Bull. JSME 1964, 7 (26), 392 – 398. DOI: 10.1299/jsme1958.7.392
10.1299/jsme1958.7.392 Google Scholar
- 50 W. Frost, G. S. Dzakowic, An extension of the method for predicting incipient boiling on commercially finished surfaces, ASME, New York 1967.
- 51 M. M. Shahs, HVACR Res. 2006, 12 (4), 1047 – 1063.
- 52 X. Fang, Int. J. Heat Mass Transfer 2013, 64, 802 – 807. DOI: 10.1016/j.ijheatmasstransfer.2013.05.024
- 53
Z. Zhou, X. Fang, D. Li, Sci. World J. 2013, 2013, 14. DOI: 10.1155/2013/458797
10.1155/2013/458797 Google Scholar
- 54 S. Saitoh, H. Daiguji, E. Hihara, Int. J. Heat Mass Transfer 2007, 50 (25 – 26), 5215 – 5225. DOI: 10.1016/j.ijheatmasstransfer.2007.06.019
- 55 Z. Sun, E. A. Groll, in Proc. of 5th IIR Gustav Lorentzen Conf. on Natural Working Fluids, Guangzhou 2002, 131 – 140.
- 56 Y. Katto, Int. J. Heat Mass Transfer 1984, 27 (6), 883 – 891. DOI: 10.1016/0017-9310(84)90009-7
- 57 H. Mori, S. Yoshida, K. Ohishi, Y. Kakimoto, in Proc. of the European Thermal Sciences Conf. (Eds: E. W. P. Hahne, W. Heidemann, K. Spindler), ETS, Heidelberg 2000.
- 58 S. Kutateladze, Kotloturbostroenie 1948, 3 (152 – 158), 20.
- 59 D. C. Groeneveld, Post-Dryout Heat Transfer at Reactor Operating Conditions, Report AECL-4513, Chalk River Nuclear Laboratories, Chalk River, ON 1973.
- 60 R. S. Dougall, W. M. Rohsenow, Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities, MIT Report 9079-26, MIT, Cambridge, MA 1963.
- 61 D. C. Groeneveld, G. G. J. Delorme, Nucl. Eng. Des. 1976, 36 (1), 17 – 26. DOI: 10.1016/0029-5493(76)90138-2
- 62 Y. Taitel, A. E. Dukler, AIChE J. 1976, 22 (1), 47 – 55. DOI: 10.1002/aic.690220105
- 63 K. Hashizume, Bull. JSME 1983, 26 (219), 1597 – 1602.
- 64 D. Steiner, in VDI Heat Atlas, 1st ed., Springer, Duesseldorf 1993.
- 65 N. Kattan, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne 1996.
- 66 O. Zürcher, D. Favrat, J. R. Thome, in Proc. of the Convective Flow and Pool Boiling Conf. (Eds: F. Mayinger, M. Lehner) Taylor & Francis, New York 1997.
- 67 A. P. Colburn, Trans. Am. Inst. Chem. Eng. 1933, 29, 174 – 210.
- 68 E. Grimison, Trans. ASME 1937, 59 (7), 583 – 594.
- 69 W. M. Kays, A. L. London, Compact Heat Exchangers, McGraw Hill, New York 1984.
- 70 H. Hausen, M. Sayer, A. J. Willmott, Heat Transfer in Counterflow, Parallel Flow and Cross Flow, McGraw-Hill, New York 1983.
- 71 E. Huge, Trans. ASME 1937, 59 (7), 573 – 581.
- 72 O. L. Pierson, Trans. ASME 1937, 59 (7), 563 – 572.
- 73 A. Zukauskas, Adv. Heat Transfer 1972, 8, 93 – 160.
- 74 F. Kreith, R. Manglik, M. Bohn, Principles of Heat Transfer, 5th ed., West Publishing Company, New York 1993.
- 75 W. A. Khan, J. R. Culham, M. M. Yovanovich, Int. J. Heat Mass Transfer 2006, 49 (25 – 26), 4831 – 4838. DOI: 10.1016/j.ijheatmasstransfer.2006.05.042
- 76 J. F. Heiss, J. Coull, Ind. Eng. Chem. 1951, 43 (5), 1226 – 1229. DOI: 10.1021/ie50497a060