Compact Temporal Causal Algorithm for Modeling Prediction in the Green Ammonia Production Process
Rui Wang
Science and Technology Innovation Center, CGN Wind Power Co. Ltd, 188 Fengtai Road Street, Beijing, 100071 China
Search for more papers by this authorLili Ma
Science and Technology Innovation Center, CGN Wind Power Co. Ltd, 188 Fengtai Road Street, Beijing, 100071 China
Search for more papers by this authorYukui Ren
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorHang Zhao
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorLi Zhou
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Lei Luo
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xu Ji
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ge He
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorRui Wang
Science and Technology Innovation Center, CGN Wind Power Co. Ltd, 188 Fengtai Road Street, Beijing, 100071 China
Search for more papers by this authorLili Ma
Science and Technology Innovation Center, CGN Wind Power Co. Ltd, 188 Fengtai Road Street, Beijing, 100071 China
Search for more papers by this authorYukui Ren
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorHang Zhao
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorLi Zhou
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Lei Luo
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xu Ji
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ge He
School of Chemical Engineering, Sichuan University, 24 Wangjiang Road Street, Chengdu, 610065 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Because of the complexity of green ammonia production, identifying useful information from massive data to construct a streamlined and interpretable prediction model is a challenge. This paper proposed an improved transfer entropy method and enhanced the model in capturing causal relationships between variables. Furthermore, a compact temporal causal identification algorithm was introduced, combining transfer entropy and direct causal identification. This algorithm integrates the advantages of both methods, enabling rapid identification of clear causal pathways in high-dimensional variable spaces. In industrial validation of the actual green ammonia process, the average number of predictive variables based on compact temporal-dependent variables and temporal Markov blankets were 3.341 and 10.171, respectively, yielding average prediction accuracies (R2) of 0.887 and 0.905. The method proposed provides new solutions for modeling prediction in green ammonia processes.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
ceat70016-sup-0001-SuppMat.docx1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Fasihi, R. Weiss, J. Savolainen, C. Breyer, Appl. Energy 2021, 294, 116170. DOI: https://doi.org/10.1016/j.apenergy.2020.116170
- 2H. Zhang, L. Wang, J. Van herle, F. Maréchal, U. Desideri, Appl. Energy 2020, 259, 114135. DOI: https://doi.org/10.1016/j.apenergy.2019.114135
- 3G. Chehade, I. Dincer, Fuel 2021, 299, 120845. DOI: https://doi.org/10.1016/j.fuel.2021.120845
- 4H. Bouaboula, M. Ouikhalfan, I. Saadoune, J. Chaouki, A. Zaabout, Y. Belmabkhout, Energy Rep. 2023, 9, 4507–4517. DOI: https://doi.org/10.1016/j.egyr.2023.03.093
- 5P. K. Sarangi, R. K. Srivastava, J. Gitanjali, G. Sathiyan, G. Venkatesan, S. Kandasamy, Fuel 2024, 371, 131863. DOI: https://doi.org/10.1016/j.fuel.2024.131863
- 6Y. Shi, H. Li, X. Liu, X. Zhang, G. Zhan, J. Cheng, J. Wang, C. Mao, L. Zhang, Chem. 2024, 10 (9), 2636–2650. DOI: https://doi.org/10.1016/j.chempr.2024.06.014
- 7G. He, Y. Dang, L. Zhou, Y. Dai, Y. Que, X. Ji, Comput. Chem. Eng. 2020, 141, 106967. DOI: https://doi.org/10.1016/j.compchemeng.2020.106967
- 8N. Salem, S. Hussein, Procedia Comput. Sci. 2019, 163, 292–299. DOI: https://doi.org/10.1016/j.procs.2019.12.111
10.1016/j.procs.2019.12.111 Google Scholar
- 9A. Tharwat, T. Gaber, A. Ibrahim, A. E. Hassanien, AI Commun. 2017, 30, 169–190. DOI: https://doi.org/10.3233/AIC-170729
- 10D. S. Matteson, R. S. Tsay, J. Am. Statist. Assoc. 2017, 112 (518), 623–637. DOI: https://doi.org/10.1080/01621459.2016.1150851
- 11S. Velliangiri, S. Alagumuthukrishnan, S. I. Thankumar joseph, Procedia Comput. Sci. 2019, 165, 104–111. DOI: https://doi.org/10.1016/j.procs.2020.01.079
10.1016/j.procs.2020.01.079 Google Scholar
- 12L. Huang, W. Hang, Y. Chao, Stat. Med. 2020, 39 (3), 294–309. DOI: https://doi.org/10.1002/sim.8400
- 13X. He, L. Sun, C. Lyu, X. Wang, Quantum Inf. Process. 2020, 19 (9), 309. DOI: https://doi.org/10.1007/s11128-020-02818-y
- 14A. Najafi, A. Joudaki, E. Fatemizadeh, IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38 (7), 1452–1464. DOI: https://doi.org/10.1109/TPAMI.2015.2487981
- 15A. S. Barnard, G. Opletal, Nanoscale 2019, 11 (48), 23165–23172. DOI: https://doi.org/10.1039/C9NR03940F
- 16K. Qin, L. Chen, J. Shi, Z. Li, K. Hao, Chemom. Intell. Lab. Syst. 2022, 225, 104559. DOI: https://doi.org/10.1016/j.chemolab.2022.104559
- 17H. Macian-Sorribes, J.-L. Molina, S. Zazo, M. Pulido-Velázquez, J. Hydrol. 2021, 597, 125722. DOI: https://doi.org/10.1016/j.jhydrol.2020.125722
- 18L. J. José Fijen, J. Joaquín López González, J. Treur, Cognitive Syst. Res. 2021, 68, 73–83. DOI: https://doi.org/10.1016/j.cogsys.2020.08.013
10.1016/j.cogsys.2020.08.013 Google Scholar
- 19Z. Jia, Y. Lin, Z. Jiao, Y. Ma, J. Wang, Entropy 2019, 21, 1233.
- 20P. Jizba, H. Lavička, Z. Tabachová, Entropy 2022, 24 (7), 855.
- 21P. Wollstadt, M. Martínez-Zarzuela, R. Vicente, F. J. Díaz-Pernas, M. J. P. o. Wibral, Plos One 2014, 9 (7), e102833.
- 22Z. Li, G. Ouyang, D. Li, X. J. P. R. E. S. Li, S. M. Nonlinear, Physics 2011, 84 (2), 021929.
- 23R. J. Kinnear, R. R. Mazumdar, Netw. Sci. 2023, 11 (3), 431–457. DOI: https://doi.org/10.1017/nws.2023.11
- 24H. Feng, R. Zheng, J. Wang, F. X. Wu, M. Li, IEEE/ACM Trans. Comput. Biol. Bioinf. 2022, 19 (2), 1042–1049. DOI: https://doi.org/10.1109/TCBB.2020.3029846
- 25N. Zhou, X. Guo, L. Zhu, Comput. Stat. Data Anal. 2024, 189, 107839. DOI: https://doi.org/10.1016/j.csda.2023.107839
- 26J. M. Peña, M. Bendtsen, Int. J. Approximate Reasoning 2017, 90, 56–75. DOI: https://doi.org/10.1016/j.ijar.2017.06.015
- 27K. Xu, Q. Cheng, J. Multivariate Anal. 2024, 199, 105241. DOI: https://doi.org/10.1016/j.jmva.2023.105241
- 28E. D'Innocenzo, A. Lucas, J. Econometrics 2024, 241 (2), 105747. DOI: https://doi.org/10.1016/j.jeconom.2024.105747
- 29T. Guo, S. Song, X. Liu, H. Wang, G. Zhang, J. Hydrol. 2024, 638, 131509. DOI: https://doi.org/10.1016/j.jhydrol.2024.131509
- 30C. Hartmann, F. Ressel, M. Hahmann, D. Habich, W. Lehner, Int. J. Data Sci. Analytics 2019, 8 (2), 165–181. DOI: https://doi.org/10.1007/s41060-018-00169-7
10.1007/s41060-018-00169-7 Google Scholar
- 31S. Zhu, M. Yang, T. Xiang, X. Xu, Y. Li, Structures 2024, 67, 106967. DOI: https://doi.org/10.1016/j.istruc.2024.106967
- 32J. A. Rodger, Expert Syst. Appl. 2014, 41 (16), 7005–7022. DOI: https://doi.org/10.1016/j.eswa.2014.05.012
- 33X. Zhang, G. Li, Z. Zhou, L. Nie, Y. Dai, X. Ji, G. He, Ind. Eng. Chem. Res. 2024, 63 (28), 12547–12560. DOI: https://doi.org/10.1021/acs.iecr.4c01118