research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Ca(BF4)2·xH2O redefined from powder diffraction as hy­dro­gen-bonded Ca(H2O)4(BF4)2 ribbons

crossmark logo

aLe Mans Université, Institut des Molécules et des Matériaux du Mans, CNRS UMR 6283, Av. Olivier Messiaen, 72085 Le Mans, France
*Correspondence e-mail: [email protected]

Edited by X. Wang, Oak Ridge National Laboratory, USA (Received 1 April 2025; accepted 15 May 2025; online 19 May 2025)

The crystal structure of the calcium bis(tetra­fluoro­borate) hydrate Ca(BF4)2·xH2O has been determined from laboratory powder diffraction data. The water mol­ecules all belong to [CaO4F4] square anti­prisms sharing F corners with [BF4] tetra­hedra, forming a mono-dimensional structure of infinite ribbons inter­connected by H⋯F and H⋯O hy­dro­gen bonds. No place is found for inter­stitial water mol­ecules, so that the com­pound has to be reformulated as Ca(H2O)4(BF4)2, which is isostructural with calcium perchlorate tetra­hydrate, Ca(ClO4)2·4H2O.

1. Introduction

Calcium-based rechargeable batteries were thought to be impossible until the demonstration of the feasibility of calcium plating at moderate tem­per­a­tures (Ponrouch et al., 2016[Ponrouch, A., Frontera, C., Bardé, F. & Palacín, M. R. (2016). Nat. Mater. 15, 169-172.]). It was observed that optimal Ca metal deposition occurred using electrolytes containing Ca(BF4)2 in a mixture of ethyl­ene carbonate and propyl­ene carbonate at T > 75 °C. There was then a need for dry and contaminant-free Ca(BF4)2. Different synthetic routes were explored as alternatives to the drying of the commercial hydrated salt Ca(BF4)2·xH2O which proved to be not trivial by Forero-Saboya et al. (2020[Forero-Saboya, J. D., Lozinšek, M. & Ponrouch, A. (2020). J. Power Sources Adv. 6, 100032.]), who proposed a value for x of 4.6, estimated by Karl–Fisher coulometer titration. However, this would correspond to 28 wt%, and a two-step decom­position is observed during thermogravimetric analysis (TGA), at 158 and 240 °C, with losses of 14.3 and 52.5 wt%, respectively. Close to two water mol­ecules would escape first and it is believed that the remaining water persists in the solid and participates in the anion hydrolysis at tem­per­a­tures above 170 °C. An older estimation for x (= 5) can be found in the PDF card 00-022-0523, dated 1969 (Kabekkodu et al., 2024[Kabekkodu, S., Dosen, A. & Blanton, T. (2024). Powder Diffr. 39, 47-59.]). The present work aims at providing a definitive value for x, if any, by a successful attempt to determine the structure using the powder diffraction route since no single crystal is available.

2. Experimental

2.1. Powder diffraction

Two powder diffraction patterns of the commercial calcium bis(tetra­fluoro­borate) hydrate [Ca(BF4)2·xH2O, Alfa Aesar] were measured using a D501 Siemens Bragg–Brentano dif­frac­tometer, the sample being either pressed or dusted on the horizontal holder, showing strong differences due to preferred orientation (see Fig. S1 in the supporting information).

2.2. Refinement

Indexing was realized using the McMaille software (Le Bail, 2004[Le Bail, A. (2004). Powder Diffr. 19, 249-254.]), leading to a triclinic cell. It was then confirmed and the intensities were extracted using the Le Bail method (Le Bail, 2005[Le Bail, A. (2005). Powder Diffr. 20, 316-326.]) implemented in the FULLPROF software (Rodríguez-Carvajal, 1993[Rodríguez-Carvajal, J. (1993). Physica B, 192, 55-69.]). The ortho­rhom­bic crystal structure of anhydrous Ca(BF4)2 (Jordan et al., 1975[Jordan, T. H., Dickens, B., Schroeder, L. W. & Brown, W. E. (1975). Acta Cryst. B31, 669-672.]) has a volume close to 1100 Å3 for Z = 8; one would expect Z = 2 for the hydrated phase having V ∼ 500 Å3. The direct-space ESPOIR software (Le Bail, 2001[Le Bail, A. (2001). Mater. Sci. Forum, 378-381, 65-70.]) provided a starting solution when using the [CaF8] square anti­prism taken from the anhydrous phase, moved randomly in the triclinic cell together with two B and five O atoms. In the resulting model, [BF2O2] tetra­hedra were formed inter­connecting [CaF8] anti­prisms in isolated infinite ribbons. After Rietveld (1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) refinements from this initial model, still using FULLPROF, it was concluded that x = 4; the initial [CaF8] block sharing four of its F corners with [BF4] tetra­hedra should be redefined as a [CaO4F4] square anti­prism. The hy­dro­gen-bonding scheme was then guessed observing the shortest distances between the O atoms and the terminal F atoms of the [BF4] tetra­hedra not in common with the calcium; six O—H⋯F and two O—H⋯O hy­dro­gen bonds were disclosed. During the final refinement, soft constraints were applied on the bonding scheme and on the [BF4] tetra­hedra. Scattering factors for B3+ cations were taken from Olukayode et al. (2023[Olukayode, S., Froese Fischer, C. & Volkov, A. (2023). Acta Cryst. A79, 229-245.]). The Rietveld plot is shown in Fig. 1[link]. Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula Ca(BF4)2.4H2O
Mr 285.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.5192 (3), 7.6756 (3), 11.6518 (5)
α, β, γ (°) 77.439 (3), 89.579 (3), 88.625 (2)
V3) 481.65 (4)
Z 2
Radiation type Cu Kα, λ = 1.540560 Å
Specimen shape, size (mm) Flat sheet, 25 × 10
 
Data collection
Diffractometer Siemens D501
Specimen mounting Plate sample holder
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 4.817, 2θmax = 109.817, 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 6.213, Rwp = 8.419, Rexp = 1.973, RBragg = 3.78, χ2 = 18.207
No. of parameters 115
No. of restraints 56
Computer programs: McMaille (Le Bail, 2004[Le Bail, A. (2004). Powder Diffr. 19, 249-254.]), ESPOIR (Le Bail, 2001[Le Bail, A. (2001). Mater. Sci. Forum, 378-381, 65-70.], FULLPROF (Rodríguez-Carvajal, 1993[Rodríguez-Carvajal, J. (1993). Physica B, 192, 55-69.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
Refined diffraction pattern from laboratory data for Ca(H2O)4(BF4)2. Red dots represent the observed data and the black line represents the calculated pattern. Bragg ticks are the peak positions (main phase at the top and the CaF2 impurity below). The bottom blue curve shows the difference between the observed and calculated patterns. A peak close to 13° (2θ) which may correspond to the (002) reflection from one tiny single crystal of the anhydrous phase in diffraction position was removed by an excluded zone (see also Fig. S1 in the supporting information, showing another pattern where there is no such peak).

3. Results and discussion

Given that all four water mol­ecules are part of the [CaO4F4] square anti­prisms, the com­pound chemistry can be reformulated as Ca(H2O)4(BF4)2 instead of the previous Ca(BF4)2·(x = 4)H2O. Indeed, there is no place to acccomodate any additional water mol­ecule. Projections of the structure along the a and b axes are shown, respectively, in Figs. 2[link] and 3[link], disclosing the com­plex hy­dro­gen-bonding scheme inter­connecting ribbons built from the calcium in square anti­prisms sharing their F corners with [BF4] tetra­hedra (Table 2[link]). A view in the direction of the ribbons (Fig. 4[link]) shows how they are efficiently stacked. Six of the eight hy­dro­gen bonds are H⋯F pointing towards the terminal F atoms of the two BF4 anions (F1, F2, F5 and F6, not shared with Ca), the remaining two hy­dro­gen bonds are H⋯O bonds involving atoms O3 and O4. There is no intra-ribbon hy­dro­gen bond in the structure. Each ribbon is inter­connected by hy­dro­gen bonding to four adjacent ribbons (Fig. 4[link]), com­pleting the structure cohesion to three dimensions. It should be noticed that this bonding scheme is an hypothesis proposed from powder diffraction data, i.e. the H atoms do not come from a Fourier difference map. Then subtleties like bifurcated bonds are hardly seen; however, bond valence calculations in the supporting material are satisfying. Trying to explain the first step in the thermogravimetric analysis (TGA) corresponding closely to the departure of two water mol­ecules would be haza­rdous. Which two O atoms would first escape at 158 °C? A thermodiffractometry study would possibly reveal the existence of a dihydrate which could be formulated Ca(H2O)2(BF4)2. So the final model presented here would require either the production of large-enough single crystals or a neutron powder diffraction approach for com­plete confirmation, but the new Ca(H2O)4(BF4)2 formula looks likely. At least we definitely have a cell and the positions of the non-H atoms.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O3i 0.84 (4) 2.19 (4) 2.859 (14) 138 (4)
O1—H12⋯F2ii 0.83 (7) 2.17 (6) 2.925 (14) 151 (5)
O2—H21⋯O4iii 0.86 (3) 2.23 (5) 3.015 (13) 152 (6)
O2—H22⋯F2iv 0.88 (2) 2.18 (3) 3.041 (12) 170 (7)
O3—H31⋯F5v 0.83 (5) 2.20 (4) 2.847 (12) 136 (4)
O3—H32⋯F6vi 0.82 (5) 2.07 (5) 2.845 (13) 156 (6)
O4—H41⋯F1 0.85 (4) 2.16 (4) 2.848 (13) 139 (4)
O4—H42⋯F6 0.86 (6) 2.05 (7) 2.873 (13) 161 (6)
Symmetry codes: (i) [x+1, y, z]; (ii) [x+1, y-1, z]; (iii) [x-1, y, z]; (iv) [-x, -y+1], [-z+1]; (v) [-x+1, -y, -z+1]; (vi) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Unit-cell projection of the Ca(H2O)4(BF4)2 structure along the a axis, showing the [BF4] tetra­hedra in blue forming infinite ribbons extending along [011] by sharing half of their F corners with the [CaO4F4] square anti­prisms. This view shows mainly the O—H⋯F inter-ribbon bonding involving the terminal F atoms of the [BF4] tetra­hedra (not shared with Ca).
[Figure 3]
Figure 3
Unit-cell projection of the Ca(H2O)4(BF4)2 structure along the b axis, showing the intricate hy­dro­gen-bonding scheme, with both O—H⋯F and O—H⋯O hy­dro­gen bonds maintaining in 3D the 1D ribbons built from [CaO4F4] square anti­prisms sharing F corners with [BF4] tetra­hedra.
[Figure 4]
Figure 4
Unit-cell projection of the Ca(H2O)4(BF4)2 structure along the [0[\overline{1}]1] axis, showing the space between the 1D ribbons and how they are inter­connected by hy­dro­gen bonding.

Searching ultimately for related materials, the title com­pound was finally found to be isostructural with calcium perchlorate tetra­hydrate, Ca(ClO4)2·4H2O (Hennings et al., 2014a[Hennings, E., Schmidt, H. & Voigt, W. (2014a). Acta Cryst. E70, 489-493.]), which is not unexpected. A search was made using the `tetra­hydrate' keyword in all Acta Crystallographica articles, the calcium perchlorate tetra­hydrate appeared 49th in a list of 1313 papers. The unit-cell parameters of these two com­pounds are not close enough for obtaining a match from the QualX search-match sofware (Altomare et al., 2015[Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A. & Rizzi, R. (2015). J. Appl. Cryst. 48, 598-603.]). Both phases present a similar hy­dro­gen-bonding scheme. In spite of Sr(BF4)2 being isostructural with Ca(BF4)2 (Goreshnik et al., 2010[Goreshnik, E., Vakulka, A. & Žemva, B. (2010). Acta Cryst. C66, e9.]), no strontium tetra­fluoro­borate tetra­hydrate was found in the literature; a trihydrate was characterized recently (Charkin et al., 2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]) and is tetra­gonal. Finally, Sr(ClO4)2·4H2O (Hennings et al., 2014b[Hennings, E., Schmidt, H. & Voigt, W. (2014b). Acta Cryst. E70, 510-514.]) is not isostructural with Ca(ClO4)2·4H2O; there is no ribbon and each perchlorate anion coordinates to a dimeric unit of two Sr2+ cations.

Anisotropy-induced physical properties are expected from such hy­dro­gen-bonded ribbons (Xia et al., 2003[Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. & Yan, H. (2003). Adv. Mater. 15, 353-389.]), which is beyond the scope of the present article, but suggests it would be of inter­est to look more closely at the title com­pound and the perchlorate analog.

4. Related literature

The following references are cited in the supporting information for this article: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]); Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Supporting information


Computing details top

Calcium bis(tetrafluoroborate) tetrahydrate Ca(BF4)2.xH2O top
Crystal data top
Ca(BF4)2.4H2O V = 481.65 (4) Å3
Mr = 285.76 Z = 2
Triclinic, P1 F(000) = 284
Hall symbol: -P 1 Dx = 1.970 Mg m3
a = 5.5192 (3) Å Cu Kα radiation, λ = 1.540560 Å
b = 7.6756 (3) Å T = 293 K
c = 11.6518 (5) Å Particle morphology: fine powder
α = 77.439 (3)° white
β = 89.579 (3)° flat_sheet, 25 × 10 mm
γ = 88.625 (2)° Specimen preparation: Prepared at 293 K
Data collection top
Siemens D501
diffractometer
Data collection mode: reflection
Radiation source: X-ray tube Scan method: step
Graphite monochromator 2θmin = 4.817°, 2θmax = 109.817°, 2θstep = 0.020°
Specimen mounting: plate sample holder
Refinement top
Rp = 6.213 Profile function: pseudo-Voigt
Rwp = 8.419 115 parameters
Rexp = 1.973 56 restraints
RBragg = 3.78 Background function: manual
5251 data points Preferred orientation correction: (011) direction, p = 0.939(3)
Excluded region(s): from 13.18 to 13.70 2-theta
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Ca 0.5043 (6) 0.2451 (4) 0.2506 (4) 0.0201 (11)*
B1 0.691 (3) 0.191 (2) 0.5625 (13) 0.035 (6)*
B2 0.243 (3) 0.6607 (19) 0.0545 (13) 0.035 (6)*
F1 0.5011 (13) 0.7110 (10) 0.4168 (9) 0.0358 (13)*
F2 0.0935 (10) 0.7473 (10) 0.4062 (8) 0.0358 (13)*
F3 0.3373 (14) 0.0207 (10) 0.3737 (6) 0.0358 (13)*
F4 0.6916 (14) 0.1862 (10) 0.4474 (6) 0.0358 (13)*
F5 0.5952 (10) 0.2388 (10) 0.9128 (8) 0.0358 (13)*
F6 1.0087 (12) 0.7163 (10) 0.0753 (8) 0.0358 (13)*
F7 0.2509 (14) 0.6727 (11) 0.9334 (6) 0.0358 (13)*
F8 0.2706 (13) 0.4841 (10) 0.1123 (7) 0.0358 (13)*
O1 0.8042 (15) 0.0218 (12) 0.2488 (12) 0.0490 (17)*
O2 0.2003 (15) 0.3521 (17) 0.3682 (8) 0.0490 (17)*
O3 0.2527 (18) 0.1006 (12) 0.1263 (9) 0.0490 (17)*
O4 0.7263 (16) 0.5128 (12) 0.2635 (10) 0.0490 (17)*
H11 0.929 (6) 0.083 (5) 0.237 (4) 0.05066*
H12 0.836 (8) 0.066 (8) 0.303 (7) 0.05066*
H21 0.075 (6) 0.370 (11) 0.324 (2) 0.05066*
H22 0.131 (7) 0.327 (14) 0.4374 (14) 0.05066*
H31 0.344 (10) 0.044 (5) 0.090 (4) 0.05066*
H32 0.184 (14) 0.179 (8) 0.077 (3) 0.05066*
H41 0.609 (6) 0.576 (5) 0.280 (4) 0.05066*
H42 0.809 (10) 0.593 (5) 0.217 (7) 0.05066*
Geometric parameters (Å, º) top
Ca—F3 2.422 (8) F5—F8i 2.227 (11)
Ca—F4 2.468 (8) F6—F7viii 2.195 (11)
Ca—F7i 2.496 (8) F6—F8ix 2.237 (10)
Ca—F8 2.501 (8) F7—F8x 2.266 (10)
Ca—O1 2.357 (10) O1—H11 0.84 (4)
Ca—O2 2.399 (11) O1—H12 0.83 (6)
Ca—O3 2.461 (12) O2—H21 0.86 (3)
Ca—O4 2.450 (10) O2—H22 0.87 (2)
B1—F1i 1.336 (18) O3—H31 0.83 (5)
B1—F2i 1.371 (18) O3—H32 0.82 (5)
B1—F3ii 1.368 (16) O4—H41 0.85 (4)
B1—F4 1.350 (17) O4—H42 0.86 (5)
B2—F5i 1.305 (18) H11—H12 1.34 (7)
B2—F6iii 1.388 (18) H21—H22 1.33 (3)
B2—F7iv 1.394 (17) H31—H32 1.33 (8)
B2—F8 1.382 (15) H41—H42 1.31 (7)
F1—F2 2.261 (9) F1—H41 2.15 (5)
F1—F3v 2.186 (10) F2—H12xi 2.17 (6)
F1—F4i 2.176 (13) F2—H22xii 2.17 (3)
F2—F3v 2.222 (10) F5—H31ii 2.20 (4)
F2—F4i 2.239 (12) F6—H32xiii 2.07 (5)
F3—F4ii 2.199 (9) F6—H42 2.04 (7)
F5—F6vi 2.231 (9) O3—H11iii 2.19 (4)
F5—F7vii 2.230 (12) O4—H21ix 2.23 (5)
F3—Ca—F4 69.9 (4) O2—Ca—O4 85.8 (5)
F3—Ca—F7i 138.3 (5) O3—Ca—O4 146.0 (7)
F3—Ca—F8 126.0 (5) F1i—B1—F2i 113.3 (13)
F3—Ca—O1 75.9 (5) F1i—B1—F3ii 107.9 (12)
F3—Ca—O2 74.8 (5) F1i—B1—F4 108.2 (14)
F3—Ca—O3 71.9 (5) F2i—B1—F3ii 108.5 (12)
F3—Ca—O4 141.2 (6) F2i—B1—F4 110.8 (13)
F4—Ca—F7i 122.1 (5) F3ii—B1—F4 108.1 (12)
F4—Ca—F8 140.4 (5) F5i—B2—F6iii 111.8 (12)
F4—Ca—O1 74.5 (5) F5i—B2—F7iv 111.4 (14)
F4—Ca—O2 77.0 (5) F5i—B2—F8 111.9 (13)
F4—Ca—O3 140.9 (3) F6iii—B2—F7iv 104.2 (13)
F4—Ca—O4 73.2 (4) F6iii—B2—F8 107.7 (12)
F7i—Ca—F8 72.9 (4) F7iv—B2—F8 109.5 (11)
F7i—Ca—O1 70.8 (4) H11—O1—H12 107 (4)
F7i—Ca—O2 143.9 (6) H21—O2—H22 100 (4)
F7i—Ca—O3 82.5 (5) H31—O3—H32 107 (10)
F7i—Ca—O4 73.3 (5) H41—O4—H42 101 (4)
F8—Ca—O1 140.4 (6) O1—H11—O3ix 138 (3)
F8—Ca—O2 74.2 (5) F2xiv—H12—O1 151 (5)
F8—Ca—O3 72.0 (5) O2—H21—O4iii 152 (3)
F8—Ca—O4 78.1 (5) F2xii—H22—O2 170 (2)
O1—Ca—O2 144.6 (8) F5ii—H31—O3 135 (4)
O1—Ca—O3 88.3 (6) F6xiii—H32—O3 156 (4)
O1—Ca—O4 105.4 (6) F1—H41—O4 139 (3)
O2—Ca—O3 101.1 (7) F6—H42—O4 161 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z1; (v) x, y+1, z; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+2; (viii) x+1, y, z1; (ix) x+1, y, z; (x) x, y, z+1; (xi) x1, y+1, z; (xii) x, y+1, z+1; (xiii) x+1, y+1, z; (xiv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
O1—H11···O3ix 0.84 (4) 2.19 (4) 2.859 (14) 138 (4)
O1—H12···F2xiv 0.83 (7) 2.17 (6) 2.925 (14) 151 (5)
O2—H21···O4iii 0.86 (3) 2.23 (5) 3.015 (13) 152 (6)
O2—H22···F2xii 0.88 (2) 2.18 (3) 3.041 (12) 170 (7)
O3—H31···F5ii 0.83 (5) 2.20 (4) 2.847 (12) 136 (4)
O3—H32···F6xiii 0.82 (5) 2.07 (5) 2.845 (13) 156 (6)
O4—H41···F1 0.85 (4) 2.16 (4) 2.848 (13) 139 (4)
O4—H42···F6 0.86 (6) 2.05 (7) 2.873 (13) 161 (6)
Symmetry codes: (ii) x+1, y, z+1; (iii) x1, y, z; (ix) x+1, y, z; (xii) x, y+1, z+1; (xiii) x+1, y+1, z; (xiv) x+1, y1, z.
Valence bond analysis according to the empirical expression from Brown & Altermatt (1985), using parameters for solids from Brese & O'Keefe (1991).
References Brese, N. E. & O'Keefe, M. (1991). Acta Cryst. B47, 192–197. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
top
F1 F2 F3 F4 F5 F6 F7 F8 O1 O2 O3 O4 Σ Σexpected
Ca 0.209 0.184 0.171 0.168 0.349 0.311 0.263 0.271 1.93 2
B1 0.862 0.784 0.790 0.830 3.27 3
B2 0.937 0.749 0.737 0.761 3.18 3
H11 0.8 0.2 1 1
H12 0.2 0.8 1 1
H21 0.8 0.2 1 1
H22 0.2 0.8 1 1
H31 0.2 0.8 1 1
H32 0.2 0.8 1 1
H41 0.2 0.8 1 1
H42 0.2 0.8 1 1
Σ 1.06 1.18 1.00 1.01 1.14 1.15 0.91 0.93 1.95 1.91 2.06 2.07
Σexpected 1 1 1 1 1 1 1 1 2 2 2 2

References

First citationAltomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A. & Rizzi, R. (2015). J. Appl. Cryst. 48, 598–603.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCharkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253–261.  Web of Science CrossRef ICSD CAS Google Scholar
First citationForero-Saboya, J. D., Lozinšek, M. & Ponrouch, A. (2020). J. Power Sources Adv. 6, 100032.  Google Scholar
First citationGoreshnik, E., Vakulka, A. & Žemva, B. (2010). Acta Cryst. C66, e9.  CrossRef ICSD IUCr Journals Google Scholar
First citationHennings, E., Schmidt, H. & Voigt, W. (2014a). Acta Cryst. E70, 489–493.  CSD CrossRef IUCr Journals Google Scholar
First citationHennings, E., Schmidt, H. & Voigt, W. (2014b). Acta Cryst. E70, 510–514.  CSD CrossRef IUCr Journals Google Scholar
First citationJordan, T. H., Dickens, B., Schroeder, L. W. & Brown, W. E. (1975). Acta Cryst. B31, 669–672.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationKabekkodu, S., Dosen, A. & Blanton, T. (2024). Powder Diffr. 39, 47–59.  CrossRef CAS Google Scholar
First citationLe Bail, A. (2001). Mater. Sci. Forum, 378–381, 65–70.  Web of Science CrossRef CAS Google Scholar
First citationLe Bail, A. (2004). Powder Diffr. 19, 249–254.  Web of Science CrossRef CAS Google Scholar
First citationLe Bail, A. (2005). Powder Diffr. 20, 316–326.  Web of Science CrossRef CAS Google Scholar
First citationOlukayode, S., Froese Fischer, C. & Volkov, A. (2023). Acta Cryst. A79, 229–245.  CrossRef IUCr Journals Google Scholar
First citationPonrouch, A., Frontera, C., Bardé, F. & Palacín, M. R. (2016). Nat. Mater. 15, 169–172.  CrossRef CAS PubMed Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRodríguez-Carvajal, J. (1993). Physica B, 192, 55–69.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. & Yan, H. (2003). Adv. Mater. 15, 353–389.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds