Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence
Maria Cecilia Fernandes
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
Search for more papers by this authorCorresponding Author
Norma W. Andrews
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
Correspondence: Norma W. Andrews, Department of Cell Biology and Molecular Genetics, 2134 Bioscience Research Building, University of Maryland, College Park, MD 20742-5815, USA. Tel.: +1 301 405 9601; fax: +1 301 314 1248; e-mail: [email protected]Search for more papers by this authorMaria Cecilia Fernandes
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
Search for more papers by this authorCorresponding Author
Norma W. Andrews
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
Correspondence: Norma W. Andrews, Department of Cell Biology and Molecular Genetics, 2134 Bioscience Research Building, University of Maryland, College Park, MD 20742-5815, USA. Tel.: +1 301 405 9601; fax: +1 301 314 1248; e-mail: [email protected]Search for more papers by this authorAbstract
The intracellular protozoan parasite Trypanosoma cruzi is the causative agent of Chagas’ disease, a serious disorder that affects millions of people in Latin America. Despite the development of lifelong immunity following infections, the immune system fails to completely clear the parasites, which persist for decades within host tissues. Cardiomyopathy is one of the most serious clinical manifestations of the disease, and a major cause of sudden death in endemic areas. Despite decades of study, there is still debate about the apparent preferential tropism of the parasites for cardiac muscle, and its role in the pathology of the disease. In this review, we discuss these issues in light of recent observations, which indicate that T. cruzi invades host cells by subverting a highly conserved cellular pathway for the repair of plasma membrane lesions. Plasma membrane injury and repair is particularly prevalent in muscle cells, suggesting that the mechanism used by the parasites for cell invasion may be a primary determinant of tissue tropism, intracellular persistence, and Chagas’ disease pathology.
References
- Alves MJ & Colli W (2007) Trypanosoma cruzi: adhesion to the host cell and intracellular survival. IUBMB Life 59: 274–279.
- Alves MJ & Mortara RA (2009) A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells? Mem Inst Oswaldo Cruz 104(Suppl 1): 76–88.
- Andrade LO & Andrews NW (2004) Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med 200: 1135–1143.
- Andrade LO & Andrews NW (2005) The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3: 819–823.
- Andrews NW & Whitlow MB (1989) Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol 33: 249–256.
- Andrews NW, Hong KS, Robbins ES & Nussenzweig V (1987) Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Exp Parasitol 64: 474–484.
- Andrews NW, Abrams CK, Slatin SL & Griffiths G (1990) A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell 61: 1277–1287.
- Anonymous (1999) Memórias do Instituto Oswaldo Cruz. Reccomendations from a satellite meeting. Mem Inst Oswaldo Cruz 94: 429–432.
- Aufderheide AC, Salo W, Madden M et al. (2004) A 9,000-year record of Chagas’ disease. P Natl Acad Sci USA 101: 2034–2039.
- Bansal D & Campbell KP (2004) Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol 14: 206–213.
- Bellotti G, Bocchi EA, de Moraes AV et al. (1996) In vivo detection of Trypanosoma cruzi antigens in hearts of patients with chronic Chagas’ heart disease. Am Heart J 131: 301–307.
- Bixby LM & Tarleton RL (2008) Stable CD8+ T cell memory during persistent Trypanosoma cruzi infection. J Immunol 181: 2644–2650.
- Bonney KM & Engman DM (2008) Chagas heart disease pathogenesis: one mechanism or many? Curr Mol Med 8: 510–518.
- Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27: 347–382.
- Burleigh BA & Andrews NW (1995) The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 49: 175–200.
- Burleigh BA & Andrews NW (1998) Signaling and host cell invasion by Trypanosoma cruzi. Curr Opin Microbiol 1: 461–465.
- Burleigh BA & Woolsey AM (2002) Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol 4: 701–711.
- Burleigh BA, Caler EV, Webster P & Andrews NW (1997) A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 136: 609–620.
- Caler EV, Chakrabarti S, Fowler KT, Rao S & Andrews NW (2001) The Exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 193: 1097–1104.
- Campbell DA, Westenberger SJ & Sturm NR (2004) The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med 4: 549–562.
- Chagas C (1909) Nova Tripanosomiaze Humana: Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n., agente etiológico de uma nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1: 159–218.
10.1590/S0074-02761909000200008 Google Scholar
- Chakrabarti S, Kobayashi KS, Flavell RA et al. (2003) Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J Cell Biol 162: 543–549.
- Chakrabarti S, Andrade LO & Andrews NW (2005) Trypanosoma cruzi invades synaptotagmin VII-deficient cells by a PI-3 kinase independent pathway. Mol Biochem Parasitol 141: 125–128.
- Chavez RA, Miller SG & Moore HP (1996) A biosynthetic regulated secretory pathway in constitutive secretory cells. J Cell Biol 133: 1177–1191.
- Combs TP, Nagajyothi F, Mukherjee S et al. (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280: 24085–24094.
- Coorssen JR, Schmitt H & Almers W (1996) Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J 15: 3787–3791.
- Coura JR & Dias JC (2009) Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 104: 31–40.
- da Silveira AB, Lemos EM, Adad SJ, Correa-Oliveira R, Furness JB & D'Avila Reis D (2007) Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Human Pathol 38: 1256–1264.
- da Silveira AB, Freitas MA, de Oliveira EC et al. (2008) Neuronal plasticity of the enteric nervous system is correlated with chagasic megacolon development. Parasitology 135: 1337–1342.
- De Araujo-Jorge TC (1989) The biology of Trypanosoma cruzi-macrophage interaction. Mem Inst Oswaldo Cruz 84: 441–462.
- de Carvalho TM & de Souza W (1989) Early events related with the behaviour of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct Funct 14: 383–392.
- Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC & Frasch AC (2002) A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas’ disease is due to a single parasite lineage. J Exp Med 195: 401–413.
- Dias E, Laranja FS, Miranda A & Nobrega G (1956) Chagas’ disease; a clinical, epidemiologic, and pathologic study. Circulation 14: 1035–1060.
- Dias JC, Prata A & Correia D (2008) Problems and perspectives for Chagas disease control: in search of a realistic analysis. Rev Soc Bras Med Trop 41: 193–196.
- Dvorak JA & Hyde TP (1973) Trypanosoma cruzi: interaction with vertebrate cells in vitro. 1. Individual interactions at the cellular and subcellular levels. Exp Parasitol 34: 268–283.
- Elias FE, Vigliano CA, Laguens RP, Levin MJ & Berek C (2003) Analysis of the presence of Trypanosoma cruzi in the heart tissue of three patients with chronic Chagas’ heart disease. Am J Trop Med Hyg 68: 242–247.
- Engman DM & Leon JS (2002) Pathogenesis of Chagas heart disease: role of autoimmunity. Acta Trop 81: 123–132.
- Fernandes O, Souto RP, Castro JA et al. (1998) Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. Am J Trop Med Hyg 58: 807–811.
- Fernandes MC, L'Abbate C, Kindro Andreoli W & Mortara RA (2007) Trypanosoma cruzi cell invasion and traffic: influence of Coxiella burnetii and pH in a comparative study between distinct infective forms. Microb Pathog 43: 22–36.
- Fernandes MC, Cortez M, Flannery AR, Tam C, Mortara RA & Andrews NW (2011) Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J Exp Med 208: 909–921.
- Ferreira AV, Segatto M, Menezes Z et al. (2011) Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect 13: 1002–1005.
- Freitas JM, Lages-Silva E, Crema E, Pena SD & Macedo AM (2005) Real time PCR strategy for the identification of major lineages of Trypanosoma cruzi directly in chronically infected human tissues. Int J Parasitol 35: 411–417.
- Gulbins E & Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22: 7070–7077.
- Gutierrez FR, Guedes PM, Gazzinelli RT & Silva JS (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 31: 673–685.
- Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL & Campbell KP (2007) Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 117: 1805–1813.
- Hill KL (2003) Biology and mechanism of trypanosome cell motility. Eukaryot Cell 2: 200–208.
- Holopainen JM, Angelova MI & Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78: 830–838.
- Hurwitz R, Ferlinz K & Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe-Seyler 375: 447–450.
- Hyde TP & Dvorak JA (1973) Trypanosoma cruzi: interaction with vertebrate cells in vitro. 2. Quantitative analysis of the penetration phase. Exp Parasitol 34: 284–294.
- Idone V, Tam C, Goss JW, Toomre D, Pypaert M & Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180: 905–914.
- Jaiswal JK, Andrews NW & Simon SM (2002) Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J Cell Biol 159: 625–635.
- Junqueira C, Caetano B, Bartholomeu DC, Melo MB, Ropert C, Rodrigues MM & Gazzinelli RT (2010) The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 12: e29.
- Kalil J & Cunha-Neto E (1996) Autoimmunity in chagas disease cardiomyopathy: fulfilling the criteria at last? Parasitol Today 12: 396–399.
- Kayama H & Takeda K (2010) The innate immune response to Trypanosoma cruzi infection. Microbes Infect 12: 511–517.
- Kierszenbaum F (1996) Chronic chagasic tissue lesions in the absence of Trypanosoma cruzi: a proposed mechanism. Parasitol Today 12: 414–415.
- Kolzer M, Ferlinz K, Bartelsen O, Hoops SL, Lang F & Sandhoff K (2004) Functional characterization of the postulated intramolecular sphingolipid activator protein domain of human acid sphingomyelinase. Biol Chem 385: 1193–1195.
- Krettli AU & Brener Z (1976) Protective effects of specific antibodies in Trypanosoma cruzi infections. J Immunol 116: 755–760.
- Ley V, Andrews NW, Robbins ES & Nussenzweig V (1988) Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. J Exp Med 168: 649–659.
- Luzio JP, Pryor PR & Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8: 622–632.
- Macedo AM & Pena SD (1998) Genetic variability of Trypanosoma cruzi: implications for the pathogenesis of Chagas disease. Parasitol Today 14: 119–124.
- Macedo AM, Machado CR, Oliveira RP & Pena SD (2004) Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz 99: 1–12.
- Martinez I, Chakrabarti S, Hellevik T, Morehead J, Fowler K & Andrews NW (2000) Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 148: 1141–1149.
- McNeil PL & Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137: 1–4.
- McNeil PL & Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19: 697–731.
- Meirelles MN & De Souza W (1983) Interaction of lysosomes with endocytic vacuoles in macrophages simultaneously infected with Trypanosoma cruzi and Toxoplasma gondii. J Submicrosc Cytol 15: 889–896.
- Milder R & Kloetzel J (1980) The development of Trypanosoma cruzi in macrophages in vitro. Interaction with lysosomes and host cell fate. Parasitology 80: 139–145.
- Miles MA, Souza A, Povoa M, Shaw JJ, Lainson R & Toye PJ (1978) Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas’ disease in Amazonian Brazil. Nature 272: 819–821.
- Mortara RA, Andreoli WK, Taniwaki NN et al. (2005) Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms. An Acad Bras Cienc 77: 77–94.
- Mortara RA, Andreoli WK, Fernandes MC, da Silva CV, Fernandes AB, L'Abbate C & da Silva S (2008) Host cell actin remodeling in response to Trypanosoma cruzi: trypomastigote versus amastigote entry. Subcell Biochem 47: 101–109.
- Nickell SP, Gebremichael A, Hoff R & Boyer MH (1987) Isolation and functional characterization of murine T cell lines and clones specific for the protozoan parasite Trypanosoma cruzi. J Immunol 138: 914–921.
- Ninomiya Y, Kishimoto T, Miyashita Y & Kasai H (1996) Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J Biol Chem 271: 17751–17754.
- Nogueira N & Cohn Z (1976) Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med 143: 1402–1420.
- Palomino SA, Aiello VD & Higuchi ML (2000) Systematic mapping of hearts from chronic chagasic patients: the association between the occurrence of histopathological lesions and Trypanosoma cruzi antigens. Ann Trop Med Parasitol 94: 571–579.
- Rassi A, Rassi A & Marin-Neto JA (2010) Chagas disease. Lancet 375: 1388–1402.
- Reddy A, Caler EV & Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106: 157–169.
- Risso MG, Sartor PA, Burgos JM et al. (2011) Immunological identification of Trypanosoma cruzi lineages in human infection along the endemic area. Am J Trop Med Hyg 84: 78–84.
- Rodriguez A, Rioult MG, Ora A & Andrews NW (1995) A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 129: 1263–1273.
- Rodriguez A, Webster P, Ortego J & Andrews NW (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137: 93–104.
- Romano PS, Arboit MA, Vazquez CL & Colombo MI (2009) The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 5: 6–18.
- Rottenberg M, Cardoni RL, Andersson R, Segura EL & Orn A (1988) Role of T helper/inducer cells as well as natural killer cells in resistance to Trypanosoma cruzi infection. Scand J Immunol 28: 573–582.
- Scharfstein J & Lima AP (2008) Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi. Subcell Biochem 47: 140–154.
- Schenkman S, Robbins ES & Nussenzweig V (1991) Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infect Immun 59: 645–654.
- Schissel SL, Jiang X, Tweedie-Hardman J et al. (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273: 2738–2746.
- Schofield CJ, Jannin J & Salvatella R (2006) The future of Chagas disease control. Trends Parasitol 22: 583–588.
- Souto RP, Fernandes O, Macedo AM, Campbell DA & Zingales B (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141–152.
- Tafuri WL (1970) Pathogenesis of lesions of the autonomic nervous system of the mouse in experimental acute Chagas’ disease. Light and electron microscope studies. Am J Trop Med Hyg 19: 405–417.
- Tam C, Idone V, Devlin C et al. (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189: 1027–1038.
- Tanowitz H, Wittner M, Kress Y & Bloom B (1975) Studies of in vitro infection by Trypanosoma cruzi. I. Ultrastructural studies on the invasion of macrophages and L-cells. Am J Trop Med Hyg 24: 25–33.
- Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, Heuser JE & Andrews NW (1992) Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71: 1117–1130.
- Tardieux I, Nathanson MH & Andrews NW (1994) Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients. J Exp Med 179: 1017–1022.
- Tarleton RL (1995) The role of T cells in Trypanosoma cruzi infections. Parasitol Today 11: 7–9.
- Tarleton RL (2007) Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19: 430–434.
- Tarleton RL & Zhang L (1999) Chagas disease etiology: autoimmunity or parasite persistence? Parasitol Today 15: 94–99.
- Tarleton RL, Zhang L & Downs MO (1997) “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. P Natl Acad Sci USA 94: 3932–3937.
- Tibayrenc M (1995) Population genetics of parasitic protozoa and other microorganisms. Adv Parasitol 36: 47–115.
- Togo T, Alderton JM, Bi GQ & Steinhardt RA (1999) The mechanism of facilitated cell membrane resealing. J Cell Sci 112(Pt 5): 719–731.
- Tyler KM, Luxton GW, Applewhite DA, Murphy SC & Engman DM (2005) Responsive microtubule dynamics promote cell invasion by Trypanosoma cruzi. Cell Microbiol 7: 1579–1591.
- van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M & Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369: 199–211.
- Viotti R, Vigliano C, Armenti H & Segura E (1994) Treatment of chronic Chagas’ disease with benznidazole: clinical and serologic evolution of patients with long-term follow-up. Am Heart J 127: 151–162.
- Walev I, Bhakdi SC, Hofmann F, Djonder N, Valeva A, Aktories K & Bhakdi S (2001) Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. P Natl Acad Sci USA 98: 3185–3190.
- Woolsey AM & Burleigh BA (2004) Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cell Microbiol 6: 829–838.
- Woolsey AM, Sunwoo L, Petersen CA, Brachmann SM, Cantley LC & Burleigh BA (2003) Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J Cell Sci 116: 3611–3622.
- Yeo M, Acosta N, Llewellyn M et al. (2005) Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35: 225–233.
- Yoshida N (2006) Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc 78: 87–111.
- Yoshida N & Cortez M (2008) Trypanosoma cruzi: parasite and host cell signaling during the invasion process. Subcell Biochem 47: 82–91.
- Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I & Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140: 39–47.
- Zhang L & Tarleton RL (1999) Parasite persistence correlates with disease severity and localization in chronic Chagas’ disease. J Infect Dis 180: 480–486.
- Zingales B, Souto RP, Mangia RH et al. (1998) Molecular epidemiology of American trypanosomiasis in Brazil based on dimorphisms of rRNA and mini-exon gene sequences. Int J Parasitol 28: 105–112.
- Zingales B, Andrade SG, Briones MR et al. (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 1051–1054.