Sampling touch DNA from human skin following skin-to-skin contact in mock assault scenarios—A comparison of nine collection methods
Venus Kallupurackal MSc
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorSonja Kummer MSc
Zurich Forensic Science Institute, Zurich, Switzerland
Search for more papers by this authorPamela Voegeli MSc
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorAdelgunde Kratzer PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorGuro Dørum PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Cordula Haas PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Correspondence
Cordula Haas PhD, University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
Email: [email protected]
Search for more papers by this authorSabine Hess MSc
Zurich Forensic Science Institute, Zurich, Switzerland
Search for more papers by this authorVenus Kallupurackal MSc
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorSonja Kummer MSc
Zurich Forensic Science Institute, Zurich, Switzerland
Search for more papers by this authorPamela Voegeli MSc
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorAdelgunde Kratzer PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorGuro Dørum PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Cordula Haas PhD
Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
Correspondence
Cordula Haas PhD, University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
Email: [email protected]
Search for more papers by this authorSabine Hess MSc
Zurich Forensic Science Institute, Zurich, Switzerland
Search for more papers by this authorAuthors Venus Kallupurackal and Sonja Kummer contributed equally.
Abstract
Collection of touch DNA from an offender on the victim's skin can provide relevant evidence for investigations of criminal cases. Therefore, the choice of the optimal sample collection method is crucial. In this study, we investigated the recovery of STR profiles from touch DNA on human skin by comparing nine different collection methods: the dry and wet cotton swabs in three different movements, the double-swab (wet–dry) method, the wet and dry Copan FLOQSwabs™, and the Scene Safe FAST™ minitapes. Mock assault scenarios were conducted with a male offender grasping the forearms of a female victim. Samples were collected from the assaulted area of the victim's skin, and the recovery of the offender's STR profile was evaluated. Our results indicate that the different swabs and swabbing techniques did not have a distinct impact on the STR recovery; however, the lowest STR recovery was achieved with Scene Safe FAST™ minitapes. In addition, we compared the double-swab method to the single-swab method by analyzing the DNA quantity of the wet and dry swabs separately. We found on average 13.7% more offender DNA using the double-swab method, but this did not translate into higher STR recovery. Our findings indicate that several methods perform equally well when collecting touch DNA from human skin, although SceneSafe FAST™ minitapes seem to be the least adequate for this purpose.
REFERENCES
- 1van Oorschot RA, Jones MK. DNA fingerprints from fingerprints. Nature. 1997; 387(6635): 767. https://doi.org/10.1038/42838.
- 2Wiegand P, Kleiber M. DNA typing of epithelial cells after strangulation. Int J Legal Med. 1997; 110(4): 181–3.
- 3Bowman ZE, Mosse KSA, Sungaila AM, van Oorschot RAH, Hartman D. Detection of offender DNA following skin-to-skin contact with a victim. Forensic Sci Int Genet. 2018; 37: 252–9. https://doi.org/10.1016/j.fsigen.2018.09.005.
- 4Fonnelop AE, Ramse M, Egeland T, Gill P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci Int Genet. 2017; 29: 48–60. https://doi.org/10.1016/j.fsigen.2017.03.019.
- 5Szkuta B, Ballantyne KN, van Oorschot RAH. Transfer and persistence of DNA on the hands and the influence of activities performed. Forensic Sci Int Genet. 2017; 28: 10–20. https://doi.org/10.1016/j.fsigen.2017.01.006.
- 6Zoppis S, Muciaccia B, D'Alessio A, Ziparo E, Vecchiotti C, Filippini A. DNA fingerprinting secondary transfer from different skin areas: Morphological and genetic studies. Forensic Sci Int Genet. 2014; 11: 137–43. https://doi.org/10.1016/j.fsigen.2014.03.005.
- 7van Oorschot RAH, Szkuta B, Meakin GE, Kokshoorn B, Goray M. DNA transfer in forensic science: a review. Forensic Sci Int Genet. 2019; 38: 140–66. https://doi.org/10.1016/j.fsigen.2018.10.014.
- 8Goray M, Fowler S, Szkuta B, van Oorschot RAH. Shedder status – An analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time. Forensic Sci Int Genet. 2016; 23: 190–6. https://doi.org/10.1016/j.fsigen.2016.05.005.
- 9Kanokwongnuwut P, Martin B, Kirkbride KP, Linacre A. Shedding light on shedders. Forensic Sci Int Genet. 2018; 36: 20–5. https://doi.org/10.1016/j.fsigen.2018.06.004.
- 10Lowe A, Murray C, Whitaker J, Tully G, Gill P. The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int. 2002; 129(1): 25–34. https://doi.org/10.1016/s0379-0738(02)00207-4.
- 11Kamphausen T, Schadendorf D, von Wurmb-Schwark N, Bajanowski T, Poetsch M. Good shedder or bad shedder – The influence of skin diseases on forensic DNA analysis from epithelial abrasions. Int J Legal Med. 2012; 126(1): 179–83. https://doi.org/10.1007/s00414-011-0579-0.
- 12Hefetz I, Einot N, Faerman M, Horowitz M, Almog J. Touch DNA: The effect of the deposition pressure on the quality of latent fingermarks and STR profiles. Forensic Sci Int Genet. 2019; 38: 105–12. https://doi.org/10.1016/j.fsigen.2018.10.016.
- 13Tobias SHA, Jacques GS, Morgan RM, Meakin GE. The effect of pressure on DNA deposition by touch. Forensic Sci Int Genet Suppl Ser. 2017; 6: E12–E14. https://doi.org/10.1016/j.fsigss.2017.09.020.
- 14Manoli P, Antoniou A, Bashiardes E, Xenophontos S, Photiades M, Stribley V, et al. Sex-specific age association with primary DNA transfer. Int J Legal Med. 2016; 130(1): 103–12. https://doi.org/10.1007/s00414-015-1291-2.
- 15Bright JA, Petricevic SF. Recovery of trace DNA and its application to DNA profiling of shoe insoles. Forensic Sci Int. 2004; 145(1): 7–12. https://doi.org/10.1016/j.forsciint.2004.03.016.
- 16Roberts D, Marks R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J Invest Dermatol. 1980; 74(1): 13–6. https://doi.org/10.1111/1523-1747.ep12514568.
- 17Milstone LM. Epidermal desquamation. J Dermatol Sci. 2004; 36(3): 131–40. https://doi.org/10.1016/j.jdermsci.2004.05.004.
- 18Junqueira LC, Carneiro J, Gratzl M. Histologie [Histology]. Berlin, Germany: Springer; 2005. p. 307.
- 19Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. Biochim Biophys Acta. 2013; 1833(12): 3471–80. https://doi.org/10.1016/j.bbamcr.2013.06.010.
- 20Eckhart L, Fischer H, Tschachler E. Mechanisms and emerging functions of DNA degradation in the epidermis. Front Biosci (Landmark Ed). 2012; 17: 2461–75. https://doi.org/10.2741/4065.
- 21Kita T, Yamaguchi H, Yokoyama M, Tanaka T, Tanaka N. Morphological study of fragmented DNA on touched objects. Forensic Sci Int Genet. 2008; 3(1): 32–6. https://doi.org/10.1016/j.fsigen.2008.09.002.
- 22Quinones I, Daniel B. Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet. 2012; 6(1): 26–30. https://doi.org/10.1016/j.fsigen.2011.01.004.
- 23van den Berge M, Ozcanhan G, Zijlstra S, Lindenbergh A, Sijen T. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci Int Genet. 2016; 21: 81–9. https://doi.org/10.1016/j.fsigen.2015.12.012.
- 24Burrill J, Daniel B, Frascione N. Illuminating touch deposits through cellular characterization of hand rinses and body fluids with nucleic acid fluorescence. Forensic Sci Int Genet. 2020; 46: 102269. https://doi.org/10.1016/j.fsigen.2020.102269.
- 25Burrill J, Daniel B, Frascione N. A review of trace "Touch DNA" deposits: Variability factors and an exploration of cellular composition. Forensic Sci Int Genet. 2019; 39: 8–18. https://doi.org/10.1016/j.fsigen.2018.11.019.
- 26Rutty GN. An investigation into the transference and survivability of human DNA following simulated manual strangulation with consideration of the problem of third party contamination. Int J Legal Med. 2002; 116(3): 170–3. https://doi.org/10.1007/s00414-001-0279-2.
- 27Meixner E, Kallupurackal V, Kratzer A, Voegeli P, Thali MJ, Bolliger SA. Persistence and detection of touch DNA and blood stain DNA on pig skin exposed to water. Forensic Sci Med Pathol. 2020; 16(2): 253–1. https://doi.org/10.1007/s12024-020-00234-3.
- 28Sweet D, Lorente M, Lorente JA, Valenzuela A, Villanueva E. An improved method to recover saliva from human skin: The double swab technique. J Forensic Sci. 1997; 42(2): 320–2.
- 29Squassina A, Piovanelli E, Castriciano S. Evaluation of DNA recovery from Copan Genetics FLOQSwabs™ for human identification. https://promega.media/-/media/files/resources/conference-proceedings/ishi-25/poster-abstracts/18-alice-squassina.pdf. Accessed 5 Apr 2021.
- 30Stoop B, Defaux PM, Utz S, Zieger M. Touch DNA sampling with SceneSafe Fast minitapes. Leg Med (Tokyo). 2017; 29: 68–71. https://doi.org/10.1016/j.legalmed.2017.10.006.
- 31Verdon TJ, Mitchell RJ, van Oorschot RAH. Evaluation of tapelifting as a collection method for touch DNA. Forensic Sci Int Genet. 2014; 8(1): 179–86. https://doi.org/10.1016/j.fsigen.2013.09.005.
- 32Gunnarsson J, Eriksson H, Ansell R. Success rate of a forensic tape-lift method for DNA recovery. Prob Forensic Sci. 2010; LXXXIII: 243–54.
- 33Barash M, Reshef A, Brauner P. The use of adhesive tape for recovery of DNA from crime scene items. J Forensic Sci. 2010; 55(4): 1058–64. https://doi.org/10.1111/j.1556-4029.2010.01416.x.
- 34Tokutomi T, Takada Y, Kanetake J, Mukaida M. Identification using DNA from skin contact: case reports. Leg Med (Tokyo). 2009; 11(Suppl 1): S576–S577. https://doi.org/10.1016/j.legalmed.2009.02.004.
- 35Hansson O, Finnebraaten M, Heitmann IK, Ramse M, Bouzga M. Trace DNA collection—Performance of minitape and three different swabs. Forensic Sci Int Genet Suppl Ser. 2009; 2(1): 189–90. https://doi.org/10.1016/j.fsigss.2009.08.098.
10.1016/j.fsigss.2009.08.098 Google Scholar
- 36Hess S, Haas C. Recovery of trace DNA on clothing: A comparison of mini-tape lifting and three other forensic evidence collection techniques. J Forensic Sci. 2017; 62(1): 187–91. https://doi.org/10.1111/1556-4029.13246.
- 37Pang BC, Cheung BK. Double swab technique for collecting touched evidence. Leg Med (Tokyo). 2007; 9(4): 181–4. https://doi.org/10.1016/j.legalmed.2006.12.003.
- 38Plaza DT, Mealy JL, Lane JN, Parsons MN, Bathrick AS, Slack DP. Nondestructive biological evidence collection with alternative swabs and adhesive lifters. J Forensic Sci. 2016; 61(2): 485–8. https://doi.org/10.1111/1556-4029.12980.
- 39Manohar Pandre GW. Evaluation of low trace DNA recovery techniques from ridged surfaces. J Forensic Res. 2013; 04(04): 199. https://doi.org/10.4172/2157-7145.1000199.
10.4172/2157-7145.1000199 Google Scholar
- 40Graham EA, Rutty GN. Investigation into "normal" background DNA on adult necks: Implications for DNA profiling of manual strangulation victims. J Forensic Sci. 2008; 53(5): 1074–82. https://doi.org/10.1111/j.1556-4029.2008.00800.x.
- 41de Bruin KG, Verheij SM, Veenhoven M, Sijen T. Comparison of stubbing and the double swab method for collecting offender epithelial material from a victim's skin. Forensic Sci Int Genet. 2012; 6(2): 219–23. https://doi.org/10.1016/j.fsigen.2011.04.019.
- 42van Oorschot RAH, Verdon TJ, Ballantyne KN. Collection of samples for DNA analysis. In: W Goodwin, editor. Forensic DNA typing protocols. Springer, New York: New York, NY; 2016. p. 1–12.
10.1007/978-1-4939-3597-0_1 Google Scholar
- 43Hochmeister M, Rudin O, Meier R, Peccioli M, Borer U, Eisenberg A, et al. A foldable cardboard box for drying and storage of by cotton swab collected biological samples. Arch Kriminol. 1997; 200(3–4): 113–20.
- 44Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991; 10(4): 506–13.
- 45 R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
- 46Miller RG. Simultaneous statistical Inference. New York, NY: Springer-Verlag; 1981.
10.1007/978-1-4613-8122-8 Google Scholar
- 47Haas C, Voegeli P, Kratzer A, Bär W. Die Schweizerische DNA-datenbank. Rückblick auf sechs erfolgreiche Jahre. [The Swiss dna database: Looking back on six successful years] Kriminalistik-Schweiz. 2006; 8–9: 558–66.
- 48Hollander M, Wolfe DA. Nonparametric statistical methods. New York, NY: John Wiley & Sons; 1973. p. 115–20.
- 49Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964; 6(3): 241–52. https://doi.org/10.1080/00401706.1964.10490181.
- 50Balogh MK, Burger J, Bender K, Schneider PM, Alt KW. Fingerprints from fingerprints. Int Congr Ser. 2003; 1239: 953–7. https://doi.org/10.1016/S0531-5131(02)00230-3.
- 51Comte J, Baechler S, Gervaix J, Lock E, Milon M-P, Delémont O, et al. Touch DNA collection – Performance of four different swabs. Forensic Sci Int Genet. 2019; 43: 102113. https://doi.org/10.1016/j.fsigen.2019.06.014.
- 52Aloraer D, Hassan NH, Albarzinji B, Goodwin W. Improving recovery and stability of touch DNA. Forensic Sci Int Genet Suppl Ser. 2017; 6: e390–e392. https://doi.org/10.1016/j.fsigss.2017.09.166.
- 53Hedman J, Jansson L, Akel Y, Wallmark N, Gutierrez Liljestrand R, Forsberg C, et al. The double-swab technique versus single swabs for human DNA recovery from various surfaces. Forensic Sci Int Genet. 2020; 46: 102253. https://doi.org/10.1016/j.fsigen.2020.102253.
- 54Schneider H, Sommerer T, Rand S, Wiegand P. Hot flakes in cold cases. Int J Legal Med. 2011; 125(4): 543–8. https://doi.org/10.1007/s00414-011-0548-7.
- 55Moore D. Characterisation of the impact of inhibition on STR profiles: Causes, mechanisms and consequences. Forensic Sci Int Genet Suppl Ser. 2019; 7(1): 911–2. https://doi.org/10.1016/j.fsigss.2019.11.018.