The relationship between critical speed and the respiratory compensation point: Coincidence or equivalence
Corresponding Author
R. M. Broxterman
Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Correspondence: R. M. Broxterman, Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA. E-mail: [email protected]Search for more papers by this authorC. J. Ade
Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
Search for more papers by this authorJ. C. Craig
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorS. L. Wilcox
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorS. J. Schlup
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorT. J. Barstow
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorCorresponding Author
R. M. Broxterman
Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Correspondence: R. M. Broxterman, Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA. E-mail: [email protected]Search for more papers by this authorC. J. Ade
Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
Search for more papers by this authorJ. C. Craig
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorS. L. Wilcox
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorS. J. Schlup
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorT. J. Barstow
Department of Kinesiology, Kansas State University, Manhattan, KS, USA
Search for more papers by this authorAbstract
It has previously been suggested that the respiratory compensation point (RCP) and critical speed (CS) parameters are equivalent and, therefore, like CS, RCP demarcates the boundary between the heavy- and severe-intensity domains. However, these findings are equivocal and therefore must be interpreted cautiously. Thus, we examined the relationship between CS and RCP across a wide range of subject fitness levels, in an attempt to determine if CS and RCP are equivalent. Forty men and 30 women (age: 23.2 ± 2.5 year, height: 174 ± 10 cm, body mass: 74.1 ± 15.7 kg) completed an incremental and four constant-speed protocols on a treadmill. RCP was determined as the point at which the minute ventilation increased disproportionately to CO2 production and the end-tidal CO2 partial pressure began to decrease. CS was determined from the constant-speed protocols using the linearized 1·time−1 model. CS and RCP, expressed as speed or metabolic rate, were not significantly different (11.7 ± 2.3 km·h−1 vs. 11.5 ± 2.3 km·h−1, p = 0.208; 2.88 ± 0.80 l·min−1 vs. 2.83 ± 0.72 l·min−1, p = 0.293) and were significantly correlated (r2 = 0.52, p < 0.0001; r2 = 0.74, p < 0.0001, respectively). However, there was a high degree of variability between the parameters. The findings of the current study indicate that, while on average CS and RCP were not different, the high degree of variability between these parameters does not permit accurate estimation of one from the other variable and suggests that these parameters may not be physiologically equivalent.
References
- Barker, T., Poole, D. C., Noble, M. L., & Barstow, T. J. (2006). Human critical power-oxygen uptake relationship at different pedalling frequencies. Experimental Physiology, 91, 621–632. doi:10.1113/expphysiol.2005.032789
- Barstow, T. J., & Mole, P. A. (1991). Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. Journal of Applied Physiology, 71, 2099–2106.
- Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology, 60, 2020–2027.
- Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Camic, C. L., Traylor, D. A., Schmidt, R. J., & Johnson, G. O. (2012). Estimated times to exhaustion and power outputs at the gas exchange threshold, physical working capacity at the rating of perceived exertion threshold, and respiratory compensation point. Applied Physiology, Nutrition, and Metabolism, 37, 872–879. doi:10.1139/h2012-057
- Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Traylor, D. A., Camic, C. L., Lewis, R. W.,…Johnson, G. O. (2013). The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Research Quarterly for Exercise and Sport, 84, 232–238. doi:10.1080/02701367.2013.784723
- Broxterman, R. M., Ade, C. J., Poole, D. C., Harms, C. A., & Barstow, T. J. (2013). A single test for the determination of the parameters of the speed-time relationship for running. Respiratory Physiology & Neurobiology, 185, 380–385. doi:10.1016/j.resp.2012.08.024
- Broxterman, R. M., Ade, C. J., Wilcox, S. L., Schlup, S. J., Craig, J. C., & Barstow, T. J. (2014). Influence of duty cycle on the power-duration relationship: Observations and potential mechanisms. Respiratory Physiology & Neurobiology, 192, 102–111. doi:10.1016/j.resp.2013.11.010
- Broxterman, R. M., Barker, T., & Barstow, T. J. (2010). Respiratory compensation point-oxygen uptake relationship at different pedaling frequencies. Medicine & Science in Sports & Exercise, 42, 507. doi:10.1249/01.MSS.0000385149.69776.9a
- Burnley, M., Doust, J. H., & Vanhatalo, A. (2006). A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Medicine & Science in Sports & Exercise, 38, 1995–2003. doi:10.1249/01.mss.0000232024.06114.a6
- Burnley, M., & Jones, A. M. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Sport Science, 7, 63–79. doi:10.1080/17461390701456148
- Carnevale, T. J., & Gaesser, G. A. (1991). Effects of pedaling speed on the power-duration relationship for high-intensity exercise. Medicine & Science in Sports & Exercise, 23, 242–246. doi:10.1249/00005768-199102000-00016
- Casaburi, R., Stringer, W. W., & Singer, E. (1995). Comparison of arterial potassium and ventilatory dynamics during sinusoidal work rate variation in man. Journal of Physiology, 485, 571–580
- Chidnok, W., Fulford, J., Bailey, S. J., DiMenna, F. J., Skiba, P. F., Vanhatalo, A., & Jones, A. M. (2013). Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the “critical power”. Journal of Applied Physiology, 115, 243–250. doi:10.1152/japplphysiol.00334.2013
- Coats, E. M., Rossiter, H. B., Day, J. R., Miura, A., Fukuba, Y., & Whipp, B. J. (2003). Intensity-dependent tolerance to exercise after attaining˙VO2max in humans. Journal of Applied Physiology, 95, 483–490.
- Copp, S. W., Hirai, D. M., Musch, T. I., & Poole, D. C. (2010). Critical speed in the rat: Implications for hindlimb muscle blood flow distribution and fibre recruitment critical speed and skeletal muscle blood flow in the rat. The Journal of Physiology, 588, 5077–5087. doi:10.1113/jphysiol.2010.198382
- Cross, T., & Sabapathy, S. (2012). The respiratory compensation “Point” as a determinant of O2 uptake kinetics? International Journal of Sports Medicine, 33, 854–854. doi:10.1055/s-0032-1321903
- Darabi, S., Dehghan, M. H., Refahi, S., & Kiani, E. (2009). Ventilation, potassium, and lactate during incremental exercise in men athletes. Research Journal of Biological Sciences, 4, 427–429
- Dekerle, J., Baron, B., Dupont, L., Vanvelcenaher, J., & Pelayo, P. (2003). Maximal lactate steady state, respiratory compensation threshold and critical power. European Journal of Applied Physiology, 89, 281–288. doi:10.1007/s00421-002-0786-y
- Dekerle, J., Mucci, P., & Carter, H. (2012). Influence of moderate hypoxia on tolerance to high-intensity exercise. European Journal of Applied Physiology, 112, 327–335. doi:10.1007/s00421-011-1979-z
- Ferguson, C., Whipp, B. J., Cathcart, A. J., Rossiter, H. B., Turner, A. P., & Ward, S. A. (2007). Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. Journal of Applied Physiology, 103, 812–822. doi:10.1152/japplphysiol.01410.2006
- Fukuba, Y., Miura, A., Endo, M., Kan, A., Yanagawa, K., & Whipp, B. J. (2003). The curvature constant parameter of the power-duration curve for varied-power exercise. Medicine & Science in Sports & Exercise, 35, 1413–1418. doi:10.1249/01.MSS.0000079047.84364.70
- Green, J. M., Crews, T. R., Bosak, A. M., & Peveler, W. W. (2003). A comparison of respiratory compensation thresholds of anaerobic competitors, aerobic competitors and untrained subjects. European Journal of Applied Physiology, 90, 608–613. doi:10.1007/s00421-003-0892-5
- Hill, A. V. (1925). The physiological basis of athletic records. Nature, 116, 544–548. doi:10.1038/116544a0
10.1038/116544a0 Google Scholar
- Hill, D., Smith, J., Leuschel, J., Chasteen, S., & Miller, S. (1995).Effect of pedal cadence on parameters of the hyperbolic power – time relationship. International Journal of Sports Medicine, 16(2), 82–87. doi:10.1055/s-2007-972969
- Hughson, R., Orok, C., & Staudt, L. (1984). A high velocity treadmill running test to assess endurance running potential. International Journal of Sports Medicine, 5(01), 23–25. doi:10.1055/s-2008-1025875
- Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., & Poole, D. C. (2010). Critical power: Implications for determination of
and exercise tolerance. Medicine & Science in Sports & Exercise, 42, 1876–1890. doi:10.1249/MSS.0b013e3181d9cf7f
- Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., & Poole, D. C. (2008).Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS.AJP: Regulatory, Integrative and Comparative Physiology, 294, R585–R593. doi:10.1152/ajpregu.00731.2007
- McLoughlin, P., Linton, R. A. F., & Band, D. M. (1994). Effects of potassium and lactic acid on ventilation in anaesthetized cats. Respiratory Physiology, 95, 171–179. doi:10.1016/0034-5687(94)90114-7
- McLoughlin, P., Popham, P., Linton, R. A. F., Bruce, R. C. H., & Band, D. M. (1994). Exercise-induces changes in plasma potassium and the ventilatory threshold in man. Journal of Physiology, 479(1), 137–147.
- McNaughton, L., & Thomas, D. (1996). Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry. International Journal of Sports Medicine, 17, 287–292. doi:10.1055/s-2007-972848
- Miura, A., Kino, F., Kajitani, S., Sato, H., Sato, H., & Fukuba, Y. (1999).The effect of oral creatine supplementation on the curvature constant parameter of the power-duration curve for cycle ergometry in humans. The Japanese Journal of Physiology, 49, 169–174. doi:10.2170/jjphysiol.49.169
- Miura, A., Sato, H., Sato, H., Whipp, B. J. W., & Fukuba, Y. (2000). The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics, 43, 133–141. doi:10.1080/001401300184693
- Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8, 329–338. doi:10.1080/00140136508930810
- Moritani, T., Nagata, A., DeVries, H. A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24, 339–350. doi:10.1080/00140138108924856
- Osawa, T., Kime, R., Hamaoka, T., Katsumura, T., & Yamamoto, M. (2011). Attenuation of muscle deoxygenation precedes EMG threshold in normoxia and hypoxia. Medicine and science in sports, 43, 1406–1413.
- Paterson, D. J., Friedland, J. S., Bascom, D. A., Clement, L. D., Cunningham, D. A., & Painter, R. (1990). Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle's syndrome. Journal of Physiology, 429, 339–348.
- Pessoa Filho, D., Alves, F., Reis, J., Greco, C., & Denadai, B. (2012). VO2 kinetics during heavy and severe exercise in swimming. International Journal of Sports Medicine, 33, 744–748. doi:10.1055/s-0031-1299753
- Poole, D. C., Ward, S. A., Gardner, G. W., & Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31, 1265–1279. doi:10.1080/00140138808966766
- Pringle, J., & Jones, A. (2002). Maximal lactate steady state, critical power and EMG during cycling. European Journal of Applied Physiology, 88, 214–226. doi:10.1007/s00421-002-0703-4
- Rausch, S. M., Whipp, B. J., Wasserman, K., & Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. Journal of Physiology, 444, 567–578.
- Scheuermann, B. W., & Kowalchuk, J. M. (1998). Attenuated respiratory compensation during rapidly incremented ramp exercise. Respiration Physiology, 114, 227–238. doi:10.1016/S0034-5687(98)00097-8
- Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and resonstitution of work capacity above critical power. Medicine & Science in Sports & Exercise, 44, 1526–1532. doi:10.1249/MSS.0b013e3182517a80
- Smith, C. G. M., & Jones, A. M. (2001). The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. European Journal of Applied Physiology, 85(1–2), 19–26. doi:10.1007/s004210100384
- Smith, J., Dangelmaier, B., & Hill, D. (1999). Critical power is related to cycling time trial performance. International Journal of Sports Medicine, 20, 374–378. doi:10.1055/s-2007-971147
- Tokmakova, M. P., Marinov, B. I., Manukov, I. H., Djurdjev, A. B., Kostianev, S. S., & Huchev, D. H. (2007). Assessment of respiratory compensation phase during graded exercise in patients with chronic heart failure. Folia Medica, 49, 26–31.
- Vanhatalo, A., Doust, J. H., & Burnley, M. (2007). Determination of critical power using a 3-min all-out cycling test. Medicine & Science in Sports & Exercise, 39, 548–555. doi:10.1249/mss.0b013e31802dd3e6
- Vanhatalo, A., Fulford, J., DiMenna, F. J., & Jones, A. M. (2010).Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: A 31P magnetic resonance spectroscopy study. Experimental Physiology, 95, 528–540. doi:10.1113/expphysiol.2009.050500
- Vanhatalo, A., Jones, A. M., & Burnley, M. (2011). Application of critical power in sport. International Journal of Sports Physiology and Performance, 6, 128–136.
- Wasserman, K., Whipp, B. J., Koyal, S. N., & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology, 35, 236–243.
- Whipp, B. J. (1994). Carotid bodies and breathing in humans. Thorax, 49, 1081–1084. doi:10.1136/thx.49.11.1081
- Whipp, B. J., Davis, J. A., & Wasserman, K. (1989). Ventilatory control of the ‘isocapnic buffering’ region in rapidly-incremental exercise. Respiration Physiology, 76, 357–367. doi:10.1016/0034-5687(89)90076-5
- Whipp, B. J., Huntsman, D. J., Stoner, N., Lamarra, N., & Wasserman, K. (1982). A constant which determines the duration of tolerance to high intensity work. Federation Proceedings, 41, 1591.
- Whipp, B. J., & Mahler, M. (1980). Dynamics of pulmonary gas exchange during exercise. In J. B. West (Ed.), Pulmonary gas exchange(Vol. II, pp. 33–96).New York, NY: Academic Press.
- Whipp, B. J., Ward, S. A., & Wasserman, K. (1986). Respiratory markers of the anaerobic threshold. Advances in Cardiology, 35, 47–64.