Species delimitation in the Polygonatum odoratum complex (Asparagaceae) based on phylogenomic and morphometric data
Tae-Young Choi
Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 South Korea
Search for more papers by this authorHyo-Sik Won
Department of Biology Education, College of Education, Daegu University, Daegu, 38453 South Korea
Search for more papers by this authorCorresponding Author
Soo-Rang Lee
Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 South Korea
Address for correspondence: Soo-Rang Lee, [email protected]
Search for more papers by this authorTae-Young Choi
Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 South Korea
Search for more papers by this authorHyo-Sik Won
Department of Biology Education, College of Education, Daegu University, Daegu, 38453 South Korea
Search for more papers by this authorCorresponding Author
Soo-Rang Lee
Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 South Korea
Address for correspondence: Soo-Rang Lee, [email protected]
Search for more papers by this authorAssociate Editor: Nigel Paul Barker
Abstract
Defining species and delineating boundaries among closely related species is challenging particularly for species complexes with a recent history of diversification. The Polygonatum odoratum complex, consisting of seven taxa, presents a compelling example showing unresolved taxonomic boundaries. Here, we aim to delimit taxonomic boundaries in the complex using genomic and morphometric data. Target enrichment was employed to analyze 40 accessions representing the seven taxa in the complex. We inferred the species tree using coalescent and maximum likelihood approaches with nuclear and plastid data. Additionally, we examined 14 morphological characters from 851 herbarium specimens and conducted morphometric analysis using factor analysis of mixed data. The phylogenomic analysis, based on 297 genes, strongly supports the presence of three monophyletic clades with a recent diversification history (<4 million years). Coupled with our morphological examinations, our findings demonstrate the existence of three distinct species, revising the previous classification of seven taxa. By applying an integrated species concept, our study resolves the species boundaries and updates the taxonomy of the P. odoratum complex.
Supporting Information
Filename | Description |
---|---|
tax13323-sup-0001-FigureS1.pdfPDF document, 617.3 KB | Fig. S1: Multi-species coalescent phylogenies inferred from target capture sequence data with three different recovery rates for 40 accessions of Polygonatum odoratum. |
tax13323-sup-0002-FigureS2.jpgJPEG image, 2.3 MB | Fig. S2: Recovered sequence heat map of 353 targeted genes. |
tax13323-sup-0003-FigureS3.pdfPDF document, 227.8 KB | Fig. S3: Maximum likelihood species tree inferred by IQ-TREE using the concatenated nuclear gene data. |
tax13323-sup-0004-FigureS4.pdfPDF document, 357.9 KB | Fig. S4: Visualization of gene tree discordance computed by PhyParts. |
tax13323-sup-0005-FigureS5.pdfPDF document, 794.6 KB | Fig. S5: Maximum likelihood species trees reconstructed from concatenated nuclear data for the Polygonatum odoratum complex, including nine accessions of five additional taxa (P. biflorum, P. commutatum, P. multiflorum, P. pubescens, P. macropodum) from P. sect. Polygonatum. |
tax13323-sup-0006-FigureS6.jpgJPEG image, 261.7 KB | Fig. S6: Cross validation error curve computed from v-fold cross-validation procedure for the optimal K selection. |
tax13323-sup-0007-FigureS7.pdfPDF document, 295.6 KB | Fig. S7: BEAST-derived chronogram of 32 accessions of the Polygonatum odoratum complex, including Asparagaceae and Iridaceae, based on the CDS dataset. Blue bars on the nodes refer to 95% highest posterior density (HPD) intervals for node ages (in million years). Tips are colored by three major clades corresponding to the newly delimited species. Green, Polygonatum odoratum; Red, P. infundiflorum; Blue, P. lasianthum. |
tax13323-sup-0008-FigureS8.jpgJPEG image, 1.3 MB | Fig. S8: Bar plots visualizing contribution rates of each morphological trait for the first and second Dim in FAMD analysis. |
tax13323-sup-0009-TableS1.xlsxExcel 2007 spreadsheet , 21.1 KB | Table S1: Voucher list of all accessions of Polygonatum odoratum complex used for molecular examination including outgroups. |
tax13323-sup-0010-TableS2.xlsxExcel 2007 spreadsheet , 33.8 KB | Table S2: Voucher list of all accessions of Polygonatum odoratum used for morphological examination. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
LITERATURE CITED
- Alexander, D.H. & Lange, K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. B. M. C. Bioinf. 12: 246. https://doi.org/10.1186/1471-2105-12-246
- Andersson, L. 1990. The driving force: Species concept and ecology. Taxon 39: 375–382. https://doi.org/10.2307/1223084
- Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. 2011. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60: 685–699. https://doi.org/10.1093/sysbio/syr041
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. & Pevzner, P.A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Computat. Biol. 19: 455–477. https://doi.org/10.1089/cmb.2012.0021
- Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148–155. https://doi.org/10.1016/j.tree.2006.11.004
- Bolger, A.M., Lohse, M. & Usadel, B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Bossert, S. & Danforth, B.N. 2018. On the universality of target-enrichment baits for phylogenomic research. Meth. Ecol. Evol. 9: 1453–1460. https://doi.org/10.1111/2041-210X.12988
- Boucher, F.C., Dentant, C., Ibanez, S., Capblancq, T., Boleda, M., Boulangeat, L., Smyčka, J., Roquet, C. & Lavergne, S. 2021. Discovery of cryptic plant diversity on the rooftops of the Alps. Sci. Rep. 11: 11128. https://doi.org/10.1038/s41598-021-90612-w
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computat. Biol. 10: 1–6. https://doi.org/10.1371/journal.pcbi.1003537
- Campos, M., Kelley, E., Gravendeel, B., Médail, F., Christenhusz, J.M.M., Fay, M.F., Catalán, P., Leitch, I.J., Forest, F., Wilkin, P. & Viruel, J. 2023. Genomic, spatial and morphometric data for discrimination of four species in the Mediterranean Tamus clade of yams (Dioscorea, Dioscoreaceae). Ann. Bot. (Oxford) 131: 635–654. https://doi.org/10.1093/aob/mcad018
- Chao, C.-T. & Tseng, Y.-H. 2019. Revision of Polygonatum, (Asparagaceae, Nolinoideae, Polygonateae) of Taiwan Chao. PhytoKeys 117: 99–118. https://doi.org/10.3897/phytokeys.117.31902
- Chen, S.-F. 1989. Karyotype analysis of eight species of Polygonatum Mill. J. Syst. Evol. 27: 39–48.
- Chen, X. & Tamura, M. 2000. Polygonatum. Pp. 223–232 in: Z.Y. Wu & P.H. Raven (eds.), Flora of China, vol. 24. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.
- Crowl, A.A., Fritsch, P.W., Tiley, G.P., Lynch, N.P., Ranney, T.G., Ashrafi, H. & Manos, P.S. 2022. A first complete phylogenomic hypothesis for diploid blueberries (Vaccinium section Cyanococcus). Amer. J. Bot. 109: 1596–1606. https://doi.org/10.1002/ajb2.16065
- Czekanski-Moir, J.E. & Rundell, R.J. 2019. The ecology of nonecological speciation and nonadaptive radiations. Trends Ecol. Evol. 34: 400–415. https://doi.org/10.1016/J.TREE.2019.01.012
- Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M. & Li, H. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10: giab008. https://doi.org/10.1093/gigascience/giab008
- Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Meth. 9: 772. https://doi.org/10.1038/nmeth.2109
- De Queiroz, K. 2005. Ernst Mayr and the modern concept of species. Proc. Natl. Acad. Sci. U.S.A. 102(suppl 1): 6600–6607. https://doi.org/10.1073/pnas.0502030102
- De Queiroz, K. 2007. Species concepts and species delimitation. Syst. Biol. 56: 879–886. https://doi.org/10.1080/10635150701701083
- Deng, X., Zhou, S. & He, X. 2007. Pollen morphology of 13 Chinese species of Polygonatum and its systematic significations. J. Wuhan Bot. Res. 25: 11–18.
- Eguchi, S. & Tamura, M.N. 2016. Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records. Evolution 70(5): 1136–1144. https://doi.org/10.1111/evo.12911
- Floden, A. 2014. A new combination in Polygonatum (Asparagaceae) and the reinstatement of P. mengtzense. Ann. Bot. Fenn. 51: 106–116. https://doi.org/10.5735/085.051.0115
- Floden, A.J. 2017. Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum. Ph.D. Dissertation. University of Tennessee, Knoxville, U.S.A.
- Floden, A. & Schilling, E.E. 2018. Using phylogenomics to reconstruct phylogenetic relationships within tribe Polygonateae (Asparagaceae), with a special focus on Polygonatum. Molec. Phylogen. Evol. 129: 202–213. https://doi.org/10.1016/j.ympev.2018.08.017
- Gillespie, R.G., Bennett, G.M., De Meester, L., Feder, J.L., Fleischer, R.C., Harmon, L.J., Hendry, A.P., Knope, M.L., Mallet, J., Martin, C., Parent, C.E., Patton, A.H., Pfennig, K.S., Rubinoff, D., Schluter, D., Seehausen, O., Shaw, K.L., Stacy, E., Stervander, M., Stroud, J.T., Wagner, C. & Wogan, G.O.U. 2020. Comparing adaptive radiations across space, time, and taxa. J. Heredity 111: 1–20. https://doi.org/10.1093/jhered/esz064
- Gitzendanner, M.A., Soltis, P.S., Yi, T.S., Li, D.Z. & Soltis, D.E. 2018. Plastome phylogenetics: 30 years of inferences into plant evolution. Pp. 293–313 in: S.M. Chaw & R.K. Jansen (eds.), Plastid genome evolution. Advances in Botanical Research, vol. 85. London: Academic Press. https://doi.org/10.1016/bs.abr.2017.11.016
10.1016/bs.abr.2017.11.016 Google Scholar
- Givnish, T.J. 2015. Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: Why conceptual distinctions are fundamental to understanding evolution. New Phytol. 207: 297–303. https://doi.org/10.1111/nph.13482
- Glaubitz, J.C., Casstevens, T.M., Lu, F., Harriman, J., Elshire, R.J., Sun, Q. & Buckler, E.S. 2014. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9: e90346. https://doi.org/10.1371/journal.pone.0090346
- Grover, C.E., Salmon, A. & Wendel, J.F. 2012. Targeted sequence capture as a powerful tool for evolutionary analysis. Amer. J. Bot. 99: 312–319. https://doi.org/10.3732/AJB.1100323
- Gu, Z. & Sun, H. 1998. The chromosome report of some plants from Motuo, Xizang (Tibet). Acta Bot. Yunnan. 20: 207–210. https://cir.nii.ac.jp/crid/1570291225238353280
- Haider, N. 2018. A brief review on species concepts with emphasis on plants. Int. J. Life Sci. 7: 115–125. https://doi.org/10.5958/2319-1198.2018.00016.7
10.5958/2319-1198.2018.00016.7 Google Scholar
- Han, M.-G., Jang, C.-G., Oh, B.-U. & Kim, Y.-S. 1998. Taxonomic study on genus Polygonatum in Korea based on karyotype analyses. Korean J. Pl. Taxon. 28: 187–208. https://doi.org/10.11110/kjpt.1998.28.2.187
10.11110/kjpt.1998.28.2.187 Google Scholar
- Hess, J.E., Campbell, N.R., Close, D.A., Docker, M.F. & Narum, S.R. 2013. Population genomics of Pacific lamprey: Adaptive variation in a highly dispersive species. Molec. Ecol. 22(11): 2898–2916. https://doi.org/10.1111/mec.12150
- Hipp, A.L., Manos, P.S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A.A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M.S., González-Rodríguez, A., Grimm, G.W., Jiang, X.L., Kremer, A., Lesur, I., McVay, J.D., Plomion, C., Rodríguez-Correa, H., Schulze, E.D., Simeone, M.C., Sork, V.L. & Valencia-Avalos, S. 2020. Genomic landscape of the global oak phylogeny. New Phytol. 226: 1198–1212. https://doi.org/10.1111/nph.16162
- Jang, C.-G. 2002. Revision of taxonomy on genus Polygonatum in Korea. Korean J. Pl. Taxon. 32: 417–447. https://doi.org/10.11110/kjpt.2002.32.4.417
10.11110/kjpt.2002.32.4.417 Google Scholar
- Jang, C.-G. & Kim, Y.-S. 1998. Taxonomic relationships of the Korean Polygonatum (Liliaceae) using the RAPDs analysis. Korean J. Pl. Taxon. 28: 371–384. https://doi.org/10.11110/kjpt.1998.28.4.371
10.11110/kjpt.1998.28.4.371 Google Scholar
- Jang, C.-G., Oh, B.-U. & Kim, Y.-S. 1998a. A new species of Polygonatum from Korea; P. grandicaule. Korean J. Pl. Taxon. 28: 41–47. https://doi.org/10.11110/kjpt.1998.28.1.041
10.11110/kjpt.1998.28.1.041 Google Scholar
- Jang, C.-G., Oh, B.-U. & Kim, Y.-S. 1998b. A new species of Polygonatum (Liliaceae) from Korea: P. infundiflorum. Korean J. Pl. Taxon. 28: 209–215. https://doi.org/10.11110/kjpt.1998.28.2.209
10.11110/kjpt.1998.28.2.209 Google Scholar
- Jeffrey, A.C. 1980. The genus Polygonatum (Liliaceae) in Eastern Asia. Kew Bull. 34: 435–471. https://doi.org/10.2307/4109822
10.2307/4109822 Google Scholar
- Johnson, M. 2017. PhyPartsPieCharts. Script available from https://github.com/mossmatters/MJPythonNotebooks/blob/master/phypartspiecharts.py (accessed 21 Dec 2022).
- Johnson, M.G., Gardner, E.M., Liu, Y., Medina, R., Goffinet, B., Shaw, A.J., Zerega, N.J.C. & Wickett, N.J. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applic. Pl. Sci. 4: 1600016. https://doi.org/10.3732/apps.1600016
- Johnson, M.G., Pokorny, L., Dodsworth, S., Botigué, L.R., Cowan, R.S., Devault, A., Eiserhardt, W.L., Epitawalage, N., Forest, F., Kim, J.T., Leebens-Mack, J.H., Leitch, I.J., Maurin, O., Soltis, D.E., Soltis, P.S., Wong, G.K.S., Baker, W.J. & Wickett, N.J. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68: 594–606. https://doi.org/10.1093/sysbio/syy086
- Jones, M.R. & Good, J.M. 2016. Targeted capture in evolutionary and ecological genomics. Molec. Ecol. 25: 185–202. https://doi.org/10.1111/mec.13304
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Haeseler, A. von & Jermiin, L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Meth. 14: 587–589. https://doi.org/10.1038/nmeth.4285
- Kassambara, A. & Mundt, F. 2020. factoextra: Extract and visualize the results of multivariate data analyses. Version 1.0.7. R package. https://CRAN.R-project.org/package=factoextra (accessed 22 Feb 2023).
- Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molec. Biol. Evol. 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Kim, J.H., Seo, J.W., Byeon, J.H., Ahn, Y.S., Cha, S.W. & Cho, J.H. 2014. Morphological characteristics and phylogenetic analysis of Polygonatum species based on chloroplast DNA sequences. Korean J. Med. Crop Sci. 22: 489–496. https://doi.org/10.7783/kjmcs.2014.22.6.489
10.7783/KJMCS.2014.22.6.489 Google Scholar
- Koenen, E.J.M., Kidner, C., Souza, É.R. de, Simon, M.F., Iganci, J.R., Nicholls, J.A., Brown, G.K., Queiroz, L.P. de, Luckow, M., Lewis, G.P., Pennington, R.T. & Hughes, C.E. 2020. Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation. Amer. J. Bot. 107: 1710–1735. https://doi.org/10.1002/ajb2.1568
- Korea National Arboretum 2016. Distribution maps of vascular plants in Korea. Pocheon: Korea National Arboretum.
- Lê, S., Josse, J. & Husson, F. 2008. FactoMineR: An R package for multivariate analysis. J. Statist. Softw. 25: 1–18. https://doi.org/10.18637/JSS.V025.I01
- Lee-Yaw, J.A., Grassa, C.J., Joly, S., Andrew, R.L. & Rieseberg, L.H. 2019. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). New Phytol. 221: 515–526. https://doi.org/10.1111/NPH.15386
- Lemmon, E.M. & Lemmon, A.R. 2013. High-throughput genomic data in systematics and phylogenetics. Annual Rev. Ecol. Evol. Syst. 44: 99–121. https://doi.org/10.1146/annurev-ecolsys-110512-135822
- Li, H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21): 2987–2993. https://doi.org/10.1093/bioinformatics/btr509
- Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [version 2]. arXiv: arXiv.1303.3997. https://doi.org/10.48550/arXiv.1303.3997 (accessed 28 Jan 2023).
10.48550/arXiv.1303.3997 Google Scholar
- Liu, J. 2016. The integrative species concept and species on the speciation way. Biodivers. Sci. 24: 1004–1008. https://doi.org/10.17520/biods.2016222
10.17520/biods.2016222 Google Scholar
- Liu, T., Wu, L., Wang, D., Wang, H., Chen, J., Yang, C., Bao, J. & Wu, C. 2016. Role of reactive oxygen species-mediated MAPK and NF-κB activation in Polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J. Biochem. 160: 315–324. https://doi.org/10.1093/JB/MVW040
- Martin, H., Touzet, P., Van Rossum, F., Delalande, D. & Arnaud, J.F. 2016. Phylogeographic pattern of range expansion provides evidence for cryptic species lineages in Silene nutans in Western Europe. Heredity 116: 286–294. https://doi.org/10.1038/hdy.2015.100
- Mayr, E. 1942. Systematics and the origin of species. New York: Columbia University Press.
- Meng, Y., Nie, Z.L., Deng, T., Wen, J. & Yang, Y.P. 2014. Phylogenetics and evolution of phyllotaxy in the Solomon's seal genus Polygonatum (Asparagaceae: Polygonateae). Bot. J. Linn. Soc. 176: 435–451. https://doi.org/10.1111/boj.12218
- Miller, P. 1768. The gardeners dictionary, 8th ed. London: printed for the author. https://doi.org/10.5962/bhl.title.541
- Minh, B.Q., Nguyen, M.A.T. & Haeseler, A. von 2013. Ultrafast approximation for phylogenetic bootstrap. Molec. Biol. Evol. 30: 1188–1195. https://doi.org/10.1093/molbev/mst024
- Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Haeseler, A. von & Lanfear, R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molec. Biol. Evol. 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
- Miquel, F.G. 1867. Prolusio Florae Japonicae. Ann. Mus. Bot. Lugduno-Batavi 3: 1–314.
- Mitchell, N., Campbell, L.G., Ahern, J.R., Paine, K.C., Giroldo, A.B. & Whitney, K.D. 2019. Correlates of hybridization in plants. Evol. Lett. 3: 570–585. https://doi.org/10.1002/evl3.146
- Moore, M.J., Soltis, P.S., Bell, C.D., Burleigh, J.G. & Soltis, D.E. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. U.S.A. 107: 4623–4628. https://doi.org/10.1073/pnas.0907801107
- Nakai, T. 1917. Notulae ad plantas Japoniae et Koreae XV. Bot. Mag. (Tokyo) 31: 281–298.
10.15281/jplantres1887.31.372_en281 Google Scholar
- Nicholls, J.A., Pennington, R.T., Koenen, E.J.M., Hughes, C.E., Hearn, J., Bunnefeld, L., Dexter, K.G., Stone, G.N. & Kidner, C.A. 2015. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers Pl. Sci. (Lausanne) 6: 153142. https://doi.org/10.3389/fpls.2015.00710
- Ogutcen, E., Christe, C., Nishii, K., Salamin, N., Möller, M. & Perret, M. 2021. Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. Molec. Phylogen. Evol. 157: 107068. https://doi.org/10.1016/j.ympev.2021.107068
- Ohara, M., Tamura, M., Hirose, T., Hiei, K. & Kawano, S. 2007. Life-history monographs of Japanese plants. 8: Polygonatum odoratum (Miller) Druce var. pluriflorum (Miq.) Ohwi (Convallariaceae). Pl. Spec. Biol. 22: 59–64. https://doi.org/10.1111/j.1442-1984.2007.00177.x
- Ownbey, R.P. 1944. The Liliaceous genus Polygonatum in North America. Ann. Missouri Bot. Gard. 31: 373–413. https://doi.org/10.2307/2394371
10.2307/2394371 Google Scholar
- Pagès, J. 2004. Analyse factorielle de donnees mixtes: Principe et exemple d'application. Revue Statist. Appl. 54: 93–111.
- Pamilo, P. & Nei, M. 1988. Relationships between gene trees and species trees. Molec. Biol. Evol. 5: 568–583. https://doi.org/10.1093/oxfordjournals.molbev.a040517
- Paradis, E., Claude, J. & Strimmer, K. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. https://doi.org/10.1093/bioinformatics/btg412
- Park, J.-M., Chung, G.-S., Oh, B.-U. & Jang, C.-G. 2011. Phylogeny of the Polygonatum odoratum complex inferred from multiple cpDNA and nuclear RNApol2_i23 sequence data (Rucaceae). Korean J. Pl. Taxon. 41: 353–360. https://doi.org/10.11110/kjpt.2011.41.4.353
10.11110/kjpt.2011.41.4.353 Google Scholar
- Peakall, R.O.D. & Smouse, P.E. 2012. GenALEx 6.5: Genetic analysis in Excel: Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
- Pillon, Y., Hopkins, H.C.F., Munzinger, J., Amir, H. & Chase, M.W. 2009. Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Bot. J. Linn. Soc. 161: 137–152. https://doi.org/10.1111/J.1095-8339.2009.00997.X
- Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., De Bakker, P.I.W., Daly, M.J. & Sham, P.C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. Amer. J. Human Genet. 81: 559–575. https://doi.org/10.1086/519795
- R Core Team 2022. R: A language and environment for statistical computing. Vienna: R Foundation. https://www.r-project.org
- Rambaut, A. 2017. FigTree, version 1.3.1. http://tree.bio.ed.ac.uk/software/figtree (accessed 8 Dec 2022).
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67: 901–904. https://doi.org/10.1093/sysbio/syy032
- Rieseberg, L.H. & Soltis, D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Pl. 5: 65–84.
- Rieseberg, L.H., Wood, T.E. & Baack, E.J. 2006. The nature of plant species. Nature 440: 524–527. https://doi.org/10.1038/nature04402
- Rochette, N.C., Rivera-Colón, A.G. & Catchen, J.M. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molec. Ecol. 28: 4737–4754. https://doi.org/10.1111/mec.15253
- Rose, J.P., Toledo, C.A.P., Lemmon, E.M., Lemmon, A.R. & Sytsma, K.J. 2021. Out of sight, out of mind: Widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70: 162–180. https://doi.org/10.1093/sysbio/syaa049
- Rosenberg, N.A. 2004. DISTRUCT: A program for the graphical display of population structure. Molec. Ecol. Notes 4: 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
- Simpson, G.G. 1951. The species concept. Evolution (Lancaster) 5: 285–298.
10.1111/j.1558-5646.1951.tb02788.x Google Scholar
- Sloan, D.B., Havird, J.C. & Sharbrough, J. 2017. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Molec. Ecol. 26: 2212–2236. https://doi.org/10.1111/mec.13959
- Smith, S.A., Moore, M.J., Brown, J.W. & Yang, Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. B. M. C. Evol. Biol. 15: 150. https://doi.org/10.1186/s12862-015-0423-0
- Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Su, X., Wu, G., Li, L. & Liu, J. 2015. Species delimitation in plants using the Qinghai-Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Ann. Bot. (Oxford) 116: 35–48. https://doi.org/10.1093/aob/mcv062
- Tamura, M. 2008. Biosystematic studies on the genus Polygonatum (Asparagaceae) V. Taxonomic revision of species in Japan. Acta Phytotax. Geobot. 59: 15–29. https://doi.org/10.18942/apg.KJ00004899883
10.18942/apg.KJ00004899883 Google Scholar
- Tamura, M. 2016. Polygonatum. Pp. 152–158 in: K. Iwatsuki, D. Boufford & H. Ohba (eds.), Flora of Japan, vol. 4b. Tokyo: Kodansha.
- Tamura, M.N. 1990. Biosystematic studies on the genus Polygonatum (Liliaceae) I. Karyotype analysis of species indigenous to Japan and its adjacent regions. Cytologia 55: 443–466. https://doi.org/10.1508/cytologia.55.443
10.1508/cytologia.55.443 Google Scholar
- Tamura, M.N., Schwarzbach, A.E., Kruse, S. & Reski, R. 1997. Biosystematic studies on the genus Polygonatum (Convallariaceae) IV. Molecular phylogenetic analysis based on restriction site mapping of the chloroplast gene trnK. Feddes Repert. 108: 159–168. https://doi.org/10.1002/fedr.19971080306
10.1002/fedr.19971080306 Google Scholar
- Thomas, A.E., Igea, J., Meudt, H.M., Albach, D.C., Lee, W.G. & Tanentzap, A.J. 2021. Using target sequence capture to improve the phylogenetic resolution of a rapid radiation in New Zealand Veronica. Amer. J. Bot. 108: 1289–1306. https://doi.org/10.1002/ajb2.1678
- Vargas, O.M., Heuertz, M., Smith, S.A. & Dick, C.W. 2019. Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Molec. Phylogen. Evol. 135: 98–104. https://doi.org/10.1016/j.ympev.2019.02.020
- Wang, J., Qian, J., Jiang, Y., Chen, X., Zheng, B., Chen, S., Yang, F., Xu, Z. & Duan, B. 2022. Comparative analysis of chloroplast genome and new insights into phylogenetic relationships of Polygonatum and tribe Polygonateae. Frontiers Pl. Sci. (Lausanne) 13: 882189. https://doi.org/10.3389/fpls.2022.882189
- Wang, J.J., Yang, Y.P., Sun, H., Wen, J., Deng, T., Nie, Z.L. & Meng, Y. 2016. The biogeographic south-north divide of Polygonatum (Asparagaceae tribe Polygonateae) within Eastern Asia and its recent dispersals in the Northern Hemisphere. PLoS ONE 11: e0166134. https://doi.org/10.1371/journal.pone.0166134
- Wang, L., Gu, Z., Gong, X. & Xiao, T. 1993. A cytological study of fifteen species in six genera of Liliaceae from Yunnan. J. Syst. Evol. 31: 549–559.
- Wiley, E.O. 1978. The evolutionary species concept reconsidered. Syst. Zool. 27: 17–26.
- Xia, M., Liu, Y., Liu, J., Chen, D., Shi, Y., Chen, Z., Chen, D., Jin, R., Chen, H., Zhu, S., Li, P., Si, J. & Qiu, Y. 2022. Out of the Himalaya-Hengduan Mountains: Phylogenomics, biogeography and diversification of Polygonatum Mill. (Asparagaceae) in the Northern Hemisphere. Molec. Phylogen. Evol. 169: 107431. https://doi.org/10.1016/j.ympev.2022.107431
- Yang, Z. & Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. U.S.A. 107: 9264–9269. https://doi.org/10.1073/pnas.0913022107
- Yardeni, G., Viruel, J., Paris, M., Hess, J., Groot Crego, C., de La Harpe, M., Rivera, N., Barfuss, M.H.J., Till, W., Guzmán-Jacob, V., Krömer, T., Lexer, C., Paun, O. & Leroy, T. 2022. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Molec. Ecol. Resources 22: 927–945. https://doi.org/10.1111/1755-0998.13523
- Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. B. M. C. Bioinf. 19: 15–30. https://doi.org/10.1186/s12859-018-2129-y
- Zhao, L.H., Zhou, S.D., He, X.J., Wang, Z.X. & Peng, L. 2014. A cytotaxonomic analysis of Chinese Polygonatum (Asparagaceae) species. Nordic J. Bot. 32: 441–451. https://doi.org/10.1111/njb.00255
- Zhao, L.H., Zhou, S.D. & He, X.J. 2019. A phylogenetic study of Chinese Polygonatum (Polygonateae, Asparagaceae). Nordic J. Bot. 37: 02019. https://doi.org/10.1111/njb.02019
- Zhao, P., Zhao, C., Li, X., Gao, Q., Huang, L., Xiao, P. & Gao, W. 2018. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 214: 274–291. https://doi.org/10.1016/j.jep.2017.12.006
- Zimmer, E.A. & Wen, J. 2015. Using nuclear gene data for plant phylogenetics: Progress and prospects II. Next-gen approaches. J. Syst. Evol. 53: 371–379. https://doi.org/10.1111/jse.12174
- Zimmers, J.C., Thomas, M., Yang, L., Bombarely, A., Mancuso, M.M., Wojciechowski, M.F. & Smith, J. F. 2017. Species boundaries in the Astragalus cusickii complex delimited using molecular phylogenetic techniques. Molec. Phylogen. Evol. 114: 93–110. https://doi.org/10.1016/j.ympev.2017.06.004