Vacuum-Evaporated Perovskite and Interfacial Modifier for Efficient Perovskite Solar Cells
Yiran Ye
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBoxin Jiao
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMinghao Li
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorLiguo Tan
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJianqiao Zhao
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHang Li
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNingyu Ren
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorRuihao Su
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDaniel Prochowicz
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01–224 Poland
Search for more papers by this authorYue Liu
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMohan Ding
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWeipeng Wang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhengjun Zhang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYu Chen
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043 China
Search for more papers by this authorCorresponding Author
Chenyi Yi
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorYiran Ye
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorBoxin Jiao
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMinghao Li
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorLiguo Tan
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJianqiao Zhao
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHang Li
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorNingyu Ren
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorRuihao Su
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDaniel Prochowicz
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01–224 Poland
Search for more papers by this authorYue Liu
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorMohan Ding
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWeipeng Wang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhengjun Zhang
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYu Chen
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100043 China
Search for more papers by this authorCorresponding Author
Chenyi Yi
Department of Electrical Engineering, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Surface passivation of the perovskite layer is crucial for enhancing the photovoltaic performance of perovskite solar cells (PSCs). Vacuum evaporation is a scalable solvent-free method for depositing a uniform and homogenous thin layer with better control of film thickness. While the use of the vacuum-deposition method to obtain high-quality perovskite thin films is recently adapted, the evaporation of organic additives for surface passivation of the perovskite layer has not been widely studied. In this work, a vacuum evaporation method is introduced to uniformly deposit a novel multifunctional organic salt, 2-chlorophenethylamine pentafluorobenzene sulfonate (2-ClPEAPf), onto a perovskite surface. It is observed that 2-ClPEAPf not only effectively passivates the interfacial defects but also prevents moisture invasion into the perovskite film. As a result, planar n–i–p PSCs exhibit maximum PCE up to 25.16% with an aperture area of 0.1 cm2 and PCE of 24.00% (certified) on an active area of 1.0 cm2. In addition, the 0.1 cm2 device with vacuum-evaporated 2-ClPEAPf reveals enhanced operational stability maintaining 92.5% of its initial efficiency after 800 hours of continuous light irradiation.
Conflict of Interest
A relevent patent has been applied.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding[1] author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202501410-sup-0001-SuppMat.docx39.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) National renewable energy laboratory. Best research-cell efficiencies 2024, https://www.nrel.gov/docs/libraries/pv/best-research-cell-efficiencies.pdf?sfvrsn=26e2254e_2 (accessed: December 2024); b) J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu, M. Li, S. Wang, Y. Zhang, C. Jiang, R. Hua, W. Tress, S. Meloni, C. Yi, Joule 2024, 8, 1691; c) H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q. Zhou, A. S. R. Bati, H. Wan, Z. Wang, L. Zeng, J. Wang, P. Serles, Y. Liu, S. Teale, Y. Liu, M. I. Saidaminov, M. Li, N. Rolston, S. Hoogland, T. Filleter, M. G. Kanatzidis, B. Chen, Z. Ning, E. H. Sargent, Science 2024, 384, 189.
- 2N. Yan, Y. Gao, J. Yang, Z. Fang, J. Feng, X. Wu, T. Chen, S. F. Liu, Angew. Chem., Int. Ed. 2023, 62, 202216668.
- 3B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 4Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 5a) L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Adv. Energy Mater. 2020, 10, 2000197; b) Y. Li, H. Wu, W. Qi, X. Zhou, J. Li, J. Cheng, Y. Zhao, Y. Li, X. Zhang, Nano Energy 2020, 77, 105237.
- 6a) C. Jiang, T. Qin, L. Tan, H. Li, J. Zhou, M. Li, Z. M. Dang, L. Ding, Q. Xiong, C. Yi, Adv. Energy Mater. 2024, 14, 2304093; b) J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu, C. Jiang, X. Zhao, L. Ding, C. Yi, Nano Energy 2022, 95, 107036.
- 7L. Luo, H. Zeng, Z. Wang, M. Li, S. You, B. Chen, A. Maxwell, Q. An, L. Cui, D. Luo, J. Hu, S. Li, X. Cai, W. Li, L. Li, R. Guo, R. Huang, W. Liang, Z. H. Lu, L. Mai, Y. Rong, E. H. Sargent, X. Li, Nat. Energy 2023, 8, 1078.
- 8a) L. Tan, J. Zhou, X. Zhao, S. Wang, M. Li, C. Jiang, H. Li, Y. Zhang, Y. Ye, W. Tress, L. Ding, M. Grätzel, C. Yi, Adv. Mater. 2023, 35, 2205027; b) H. Li, J. Zhou, L. Tan, M. Li, C. Jiang, S. Wang, X. Zhao, Y. Liu, Y. Zhang, Y. Ye, Sci. Adv. 2022, 8, abo7422.
- 9W. M. Gu, Y. Zhang, K. J. Jiang, G. Yu, Y. Xu, J. H. Huang, Y. Zhang, F. Wang, Y. Li, Y. Lin, X. Jiao, C. Y. Gao, H. Fan, N. Wu, X. Zhou, Y. Song, J. Mater. Chem. A 2022, 10, 12882.
- 10a) M. Zhang, W. Hu, Y. Shang, W. Zhou, W. Zhang, S. Yang, Sol. RRL 2020, 4, 2000113; b) S. Tan, T. Huang, I. Yavuz, R. Wang, T. W. Yoon, M. Xu, Q. Xing, K. Park, D. K. Lee, C. H. Chen, R. Zheng, T. Yoon, Y. Zhao, H. C. Wang, D. Meng, J. Xue, Y. J. Song, X. Pan, N. G. Park, J. W. Lee, Y. Yang, Nature 2022, 605, 268.
- 11H. Li, L. Tan, C. Jiang, M. Li, J. Zhou, Y. Ye, Y. Liu, C. Yi, Adv. Funct. Mater. 2022, 33, 2211232.
- 12a) J. Liu, Z. Yang, Z. Gong, Z. Shen, Y. Ye, B. Yang, Y. Qiu, B. Ye, L. Xu, T. Guo, S. Xu, ACS Appl. Mater. Interfaces 2021, 13, 13362; b) C. Zhu, X. Wang, H. Li, C. Wang, Z. Gao, P. Zhang, X. Niu, N. Li, Z. Xu, Z. Su, Y. Chen, H. Zai, H. Xie, Y. Zhao, N. Yang, G. Liu, X. Wang, H. Zhou, J. Hong, X. Gao, Y. Bai, Q. Chen, Interdiscip. Mater. 2023, 2, 348.
- 13J. Venables, G. Spiller, M. Hanbucken, Rep. Prog. Phys. 1984, 47, 399.
- 14A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza, H. J. Snaith, Nano Lett. 2014, 14, 3247.
- 15S. Tan, I. Yavuz, M. H. Weber, T. Huang, C. H. Chen, R. Wang, H. C. Wang, J. H. Ko, S. Nuryyeva, J. Xue, Y. Zhao, K. H. Wei, J. W. Lee, Y. Yang, Joule 2020, 4, 2426.
- 16Y. Wu, Q. Liang, H. Zhu, X. Dai, B. B. Yu, Y. Hu, M. Chen, L. B. Huang, S. M. Zakeeruddin, Z. Shen, J. Wang, M. Grätzel, Adv. Funct. Mater. 2023, 33, 2302404.
- 17a) B. Yu, Y. Sun, J. Zhang, K. Wang, H. Yu, Small 2023, 20, 2307025; b) E. Robinson, Can. J. Chem. 1961, 39, 247; c) X. Jiang, G. Yang, B. Zhang, L. Wang, Y. Yin, F. Zhang, S. Yu, S. Liu, H. Bu, Z. Zhou, L. Sun, S. Pang, X. Guo, Angew. Chem., Int. Ed. 2023, 135, 202313133; d) Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D. H. Kang, J. Zeng, X. Gao, Q. Wang, H. Hu, H. Zhou, X. Cai, X. Tian, P. Reiss, B. Xu, T. Kirchartz, Z. Xiao, S. Dai, N. G. Park, J. Ye, X. Pan, Nature 2023, 624, 557; e) D. Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia, X. Jia, S. Sajid, A. M. Elseman, L. Chu, Y. Li, B. Jiang, J. Qiao, Y. Yuan, M. Li, Adv. Mater. 2018, 30, 1707583; f) G. B. De los Reyes, M. Dasog, M. Na, L. V. Titova, J. G. C. Veinot, F. A. Hegmann, Phys. Chem. Chem. Phys. 2015, 17, 30125.
- 18J. Zhu, Y. Qian, Z. Li, O. Y. Gong, Z. An, Q. Liu, J. H. Choi, H. Guo, P. J. Yoo, D. H. Kim, T. K. Ahn, G. S. Han, H. S. Jung, Adv. Energy Mater. 2022, 12, 2200632.
- 19H. Wang, F. Ye, J. Liang, Y. Liu, X. Hu, S. Zhou, C. Chen, W. Ke, C. Tao, G. Fang, Joule 2022, 6, 2869.
- 20M. Li, B. Jiao, Y. Peng, J. Zhou, L. Tan, N. Ren, Y. Ye, Y. Liu, Y. Yang, Y. Chen, L. Ding, C. Yi, Adv. Mater. 2024, 36, 2406532.
- 21Q. Zhou, D. He, Q. Zhuang, B. Liu, R. Li, H. Li, Z. Zhang, H. Yang, P. Zhao, Y. He, Z. Zang, J. Chen, Adv. Funct. Mater. 2022, 32, 2205507.
- 22a) H. Chen, Y. Zhan, G. Xu, W. Chen, S. Wang, M. Zhang, Y. Li, Y. Li, Adv. Funct. Mater. 2020, 30, 2001788;
b) T. Kirchartz, U. Rau, Advanced Characterization Techniques for Thin Film Solar Cells, Wiley-Vch, Weinheim, Germany 2011;
10.1002/9783527636280.ch1 Google Scholarc) A. K. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569.
- 23M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y. B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y. L. Loo, J. M. Luther, et al., Nat. Energy 2020, 5, 35.
- 24a) H. Liu, N. Li, Z. Chen, S. Tao, C. Li, L. Jiang, X. Niu, Q. Chen, F. Wang, Y. Zhang, Z. Huang, T. Song, H. Zhou, Adv. Mater. 2022, 34, 2204458; b) B. Jiao, Y. Ye, L. Tan, Y. Liu, N. Ren, M. Li, J. Zhou, H. Li, Y. Chen, X. Li, C. Yi, Adv. Mater. 2024, 36, 2313673.
- 25a) L. Yan, H. Huang, P. Cui, S. Du, Z. Lan, Y. Yang, S. Qu, X. Wang, Q. Zhang, B. Liu, X. Yue, X. Zhao, Y. Li, H. Li, J. Ji, M. Li, Nat. Energy 2023, 8, 1158; b) Z. Zhang, X. Tian, C. Wang, J. Jin, Y. Jiang, Q. Zhou, J. Zhu, J. Xu, R. He, Y. Huang, S. Ren, C. Chen, P. Gao, R. Long, D. Zhao, Energy Environ. Sci. 2022, 15, 5274.
- 26a) Z. Song, K. Sun, Y. Meng, Z. Zhu, Y. Wang, W. Zhang, Y. Bai, X. Lu, R. Tian, C. Liu, Z. Ge, Adv. Mater. 2024, 37, 2410779; b) Q. Chang, Y. Yun, K. Cao, W. Yao, X. Huang, P. He, Y. Shen, Z. Zhao, M. Chen, C. Li, B. Wu, J. Yin, Z. Zhao, J. Li, N. Zheng, Adv. Mater. 2024, 36, 2406296.