Free-Standing Electrode and Fixed Surface Tiny Electrode Implemented Triboelectric Nanogenerator with High Instantaneous Current
Corresponding Author
Haitao Wang
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorYasuyoshi Kurokawa
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorJia Wang
Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorWentao Cai
Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorJia-Han Zhang
Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorShinya Kato
Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555 Japan
Search for more papers by this authorCorresponding Author
Noritaka Usami
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haitao Wang
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorYasuyoshi Kurokawa
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorJia Wang
Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorWentao Cai
Center for Integrated Research of Future Electronics, Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603 Japan
Search for more papers by this authorJia-Han Zhang
Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorShinya Kato
Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555 Japan
Search for more papers by this authorCorresponding Author
Noritaka Usami
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Conventional triboelectric nanogenerators (TENGs) face challenges pertaining to low output current density at low working frequencies and high internal impedance. While strategies, such as surface modification to enhance surface charge density, permittivity regulation of materials, and circuit management, have partially mitigated these issues. However, they have also resulted in increased complexity in the fabrication process. Therefore, there is an urgent demand for a universal and simplified approach to address these challenges. To fulfill this need, this work presents a free-standing electrode and fixed surface tiny electrode implemented triboelectric nanogenerator (FFI-TENG). It is fabricated by a straightforward yet effective method: introducing a tiny electrode onto the surface of the tribo-negative material. This approach yields substantial enhancements in performance, notably a more than tenfold increase in output current density, a reduction in effective working frequencies, and a decrease in matching resistance as compared to vertical contact-separation TENGs (CS-TENGs) or single-electrode TENGs (SE-TENGs). Simultaneously, a comprehensive examination and proposition regarding the operational mechanism of FFI-TENG, highlighting its extensive applicability are also offered. Significantly, FFI-TENG excels in mechanical energy harvesting even under ultra-low working frequencies (0.1 Hz), outperforming similar contact-separation models. This innovation positions it as a practical and efficient solution for the development of low-entropy energy harvesters.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308531-sup-0001-SuppMat.pdf600.8 KB | Supporting Information |
smll202308531-sup-0002-MovieS1.mp47 MB | Supplemental Movie 1 |
smll202308531-sup-0003-MovieS2.mp412 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. L. Wang, Nano Energy 2019, 58, 669.
- 2H. Wang, H. Sakamoto, H. Asai, J. H. Zhang, T. Meboso, Y. Uchiyama, E. Kobayashi, E. Takamura, S. I. Suye, Nano Energy 2021, 90, 106515.
- 3J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z. L. Wang, Nat. Energy 2016, 1, https://doi.org/10.1038/nenergy.2016.138.
10.1038/nenergy.2016.138 Google Scholar
- 4G. Zhu, J. Chen, T. Zhang, Q. Jing, Z. L. Wang, Nat. Commun. 2014, 5, https://doi.org/10.1038/ncomms4426.
10.1038/ncomms4426 Google Scholar
- 5C. Zhang, W. Tang, C. Han, F. Fan, Z. L. Wang, Adv. Mater. 2014, 26, 3580.
- 6L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Research 2021, 2021, 23.
- 7S. Gao, Y. Zhu, Y. Chen, M. Tian, Y. Yang, T. Jiang, Z. L. Wang, Mater. Today 2019, 28, 17.
- 8R. Zhang, H. Olin, EcoMat 2020, 2, e12062.
- 9Q. Sun, F. Liang, G. Ren, L. Zhang, S. He, K. Gao, Z. Gong, Y. Zhang, X. Kang, C. Zhu, Y. Song, H. Sheng, G. Lu, H. D. Yu, W. Huang, Adv. Mater. 2023, 35, 2210915.
- 10W. G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M. S. Kim, Y. K. Choi, ACS Nano 2021, 15, 258.
- 11H. Wang, M. Han, Y. Song, H. Zhang, Nano Energy 2021, 81, 105627.
- 12Z. L. Wang, Faraday Discuss. 2014, 176, 447.
- 13H. Zhang, L. Yao, L. Quan, X. Zheng, Nanotechnol. Rev. 2020, 9, 610.
- 14C. K. Jeong, J. Lee, M. Lee, S. Lee, J. Ryu, P. Parashar, Y. Cho, J. Ahn, I. Kim, F. Jiang, P. S. Lee, G. Khandelwal, S. Kim, H. S. Kim, H. Song, M. Kim, J. Nah, W. Kim, H. G. Menge, Y. T. Park, W. Xu, J. Hao, H. Park, J. Lee, Z. H. Guo, X. Wang, J. Chen, X. Xiao, X. Xie, M. Jarin, et al., 2023, 17, 11087.
- 15H. Wang, M. Han, Y. Song, H. Zhang, Nano Energy 2021, 81, 105627.
- 16S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
- 17J. Chung, S. H. Chung, Z. H. Lin, Y. Jin, J. Hong, S. Lee, Nano Energy 2021, 88, 106292.
- 18J. H. Zhang, Y. Zhang, N. Sun, Y. Li, J. Du, L. Zhu, X. Hao, Nano Energy 2021, 84, 105892.
- 19J. Shao, M. Willatzen, Z. L. Wang, J. Appl. Phys. 2020, 128, 111101.
- 20Y. Bai, H. Feng, Z. Li, Cell Rep. 2022, 3, 101108.
- 21M. Ibrahim, J. Jiang, Z. Wen, X. Sun, Nanoenergy Adv. 2021, 1, 58.
10.3390/nanoenergyadv1010004 Google Scholar
- 22Y. Zou, J. Xu, K. Chen, J. Chen, Adv. Mater. Technol. 2021, 6, 202000916.
- 23S. Wang, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 6339.
- 24Z. Wang, W. Liu, W. He, H. Guo, L. Long, Y. Xi, X. Wang, A. Liu, C. Hu, Joule 2021, 5, 441.
- 25H. Wu, S. Fu, W. He, C. Shan, J. Wang, Y. Du, S. Du, B. Li, C. Hu, Adv. Funct. Mater. 2022, 32, 2203884.
- 26W. He, C. Shan, S. Fu, H. Wu, J. Wang, Q. Mu, G. Li, C. Hu, Adv. Mater. 2023, 35, https://doi.org/10.1002/adma.202209657.
10.1002/adma.202209657 Google Scholar
- 27S. Lu, W. Lei, L. Gao, X. Chen, D. Tong, P. Yuan, X. Mu, H. Yu, Nano Energy 2021, 87, 106137.
- 28H. L. Wang, Z. H. Guo, G. Zhu, X. Pu, Z. L. Wang, ACS Nano 2021, 15, 7513.
- 29W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R. X. Xu, Z. L. Wang, X. C. Zeng, Z. Wang, Nature 2020, 578, 392.
- 30Q. Zhang, Y. Li, H. Cai, M. Yao, H. Zhang, L. Guo, Z. Lv, M. Li, X. Lu, C. Ren, P. Zhang, Y. Zhang, X. Shi, G. Ding, J. Yao, Z. Yang, Z. L. Wang, Adv. Mater. 2021, 33, https://doi.org/10.1002/adma.202105761.
10.1002/adma.202105761 Google Scholar
- 31N. Zhang, H. Zhang, W. Xu, H. Gu, S. Ye, H. Zheng, Y. Song, Z. Wang, X. Zhou, Droplet 2022, 1, 56.
- 32H. Wang, Y. Kurokawa, K. Gotoh, S. Kato, S. Yamada, T. Itoh, N. Usami, Jpn. J. Appl. Phys. 2023, 62, SC1032.
- 33Y. Yang, C. Lee, Droplet 2022, 1, 12.
10.1002/dro2.15 Google Scholar
- 34M. A. M. Hasan, T. Zhang, H. Wu, Y. Yang, Adv. Energy Mater. 2022, 12, 2201383.
- 35H. Zhang, S. Feng, D. He, Y. Xu, M. Yang, J. Bai, Nano Energy 2018, 48, 256.
- 36D. Zhao, X. Yu, Z. Wang, J. Wang, X. Li, Z. L. Wang, T. Cheng, Nano Energy 2021, 89, 106335.
- 37H. Yi, L. Xiong, J. Comput. Electron. 2020, 19, 1670.
- 38J. Wang, X. Yu, D. Zhao, Y. Yu, Q. Gao, T. Cheng, Z. L. Wang, Adv. Energy Mater. 2021, 11, 2101356.
- 39W. Akram, Q. Chen, G. Xia, J. Fang, Nano Energy 2023, 106, 108043.
- 40H. Zou, L. Guo, H. Xue, Y. Zhang, X. Shen, X. Liu, P. Wang, X. He, G. Dai, P. Jiang, H. Zheng, B. Zhang, C. Xu, Z. L. Wang, Nat. Commun. 2020, 11, https://doi.org/10.1038/s41467-020-15926-1.
10.1038/s41467-020-15926-1 Google Scholar
- 41S. Lin, Z. Lin Wang, Mater. Today 2023, 62, 111.
- 42R. Xu, Q. Zhang, J. Y. Wang, D. Liu, J. Wang, Z. L. Wang, Nano Energy 2019, 66, 104185.
- 43H. Wang, S. Huang, H. Kuang, C. Zhang, Y. Liu, K. Zhang, X. Cai, X. Wang, J. Luo, Z. L. Wang, Adv. Energy Mater. 2023, 13, https:/doi.org/10.1002/aenm.202300529.
- 44C. Xu, B. Zhang, A. C. Wang, H. Zou, G. Liu, W. Ding, C. Wu, M. Ma, P. Feng, Z. Lin, Z. L. Wang, ACS Nano 2019, 13, 2034.
- 45Z. L. Wang, A. C. Wang, Mater. Today 2019, 30, 34.
- 46H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, Z. L. Wang, Nat. Commun. 2019, 10, https:/doi.org/10.1038/s41467-019-09461-x.
- 47X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun, C. Zhao, Z. Wen, Nano Energy 2021, 79, 105439.
- 48X. Chen, Y. Liu, Y. Sun, T. Zhao, C. Zhao, T. A. Khattab, E. G. Lim, X. Sun, Z. Wen, Nano Energy 2022, 98, 107236.
- 49A. Thyssen, Charge Distribution and Stability in Electret Materials, Doctoral Dissertation, Danmarks Tekniske Universitet, XX XX 2016.
- 50Y. Xiao, B. Xu, Q. Bao, Y. Lam, Polymers (Basel) 2022, 14, 3029.
- 51J. Han, Y. Wang, Y. Ma, C. Wang, ACS Appl. Mater. Interfaces 2023, 31795.
- 52H. Wu, Z. Chen, G. Xu, J. Xu, Z. Wang, Y. Zi, ACS Appl. Mater. Interfaces 2020, 12, 56060.
- 53K. Bohinc, V. Kralj-Iglic, A. Iglic, Electrochim. Acta 2001, 46, 3033.
- 54G. I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, J. Klos, S. Lamperski, Phys. Chem. Chem. Phys. 2017, 20, 262.